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A method of Mdssbauer Fourier spectroscopy is developed to determine the
correlation function of coordinates of a macromolecular system. The method does
not require the use of an a priori dynamic model. The application of the method
to the analysis of RSMR data for human serum albumin has demonstrated con-
siderable changes in the dynamic behavior of the protein globule when the tempera-
ture is changed from 270 to 310 K. The main conclusions of the present work is
the simultaneous observation of low-frequency (7 = 10~° sec) and high-frequency
(r € 10™° sec) large-scaled motions, that is the two-humped distribution of

correlation times of protein motions.

In recent years, Mossbauer spectroscopy has found wide application in studies of
dynamic properties and functional activity of biopolymers [1—8] and synthetized
polymers [9]. Containing an appreciable amount of solvent (water), a polymer system
possesses conformational mobility owing to rotating isomers and bond-angle
bending [10]. These motions are largely different from vibrations in usual solids.
Mossbauer spectra of solvated polymer systems make it clear that conformational
motions occur by local diffusion [9,11—-18]. The overall amplitudes of the con-
formational motions are much greater than those of bond stretching and may be as
high as a few Angstroms as far as functionally important degrees of freedom are
concerned [2,19-21]. The protein dynamics is convenient to describe with the help
of temporal dependencies of the autocorrelation function of coordinates of different

= -protein groups. So far, for the experimental determination of this function, models

of polymer dynamics have been invoked. The approach using model-free analysis
would enable investigators to consider the biomacromolecule dynamics and function
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on a qualitatively new level. In an attempt to achieve this goal, we propose amethod
based on Fourier analysis of Mossbauer spectra. Very informative in the domain
10719 — 107¢ s, the Fourier analysis offers a time window in which our method
works well. The use of the Fourier analysis for the derivation of the Van Hove corre-
lation function permits one to avoid computational difficulties with non-Lorentzian
spectra that have been encountered with other methods and which have not been
surmounted entirely.

The shape of the gamma-emission (absorption) spectrum of a nucleus is known to
be closely correlated with the dynamic behavior of the system and takes the form [23] :

g(w) = % I cos((w — w )W (1) exp(— Ty #/2)de, (1)
0

where T, is the natural line width and w, is the frequency of recoil-free emission.
Assuming that the motion of a nucleus is a classical random stationary Gaussian

process [24] , we have:

- <(AX(r))2>] _ exp{ﬂ 90(0)1—2 so(l‘)l | @)

Y(t) = expl 72

where ¢(f) = { X(£)X(0)) is the correlation function, X(?) is the nucleus coordinate,
and 27X is the emission wave length. The symbol (...} denotes the averaging over the
Gibb’s ensemble. In calculating the spectrum of Rayleigh scattering of Mdssbauer
radiation (RSMR), the X ™! quantity is to be replaced by g — the momentum transfer
of the y-quantum [25].

Hence, in an approach using Mdssbauer spectroscopy, information on the
molecular dynamics is contained in the ¥ (f) function. A method for determining
¥ () from experimental Mdssbauer spectra is proposed in the present paper.

Generally, the function ¥ (¢) in the integral of (1) decays monotonously from
1.0 to its ultimate value (o) in a time which is of the order of the correlation
time 7 of the process. For convenience, in what follows we introduce the quantity
¥'(@) [26]:

T(t) = ¥(o) + ¥'(F). (3)

Substituting (3) into (1) gives two terms representing the so-called narrow and wide
components of the spectrum:
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Ty /2m
(w- we)z + (1-‘0/2)2

g(w) = ¥(=)

+ _11?'I cos [(w — wg) * t] exp (‘ FL;) v'(t)de. (4)
0

The broad component has an effective width that exceeds the natural one by ™' . In

the case of solids, the Mossbauer spectroscopy usually deals with processes for which
7-' » I, (for instance, lattice and intramolecular vibrations). The wide component
in this case cannot be singled out from the spectrum measured, and the second term
in (4) is neglected. Thus, one could observe a Lorentzian line of natural width (Moss-
bauer line) only. The area ¥(°0) under this line is the probability of recoil-free
processes. We denote it by f and f ' for an emission and an absorption spectrum,
respectively. The solution for ¥ () of eq. (5) below, derived from (4),

- Lyf2m
(w = we)* + (Tp/2)?

g(w) = ¥ () (5)

can be obtained by the conventional least-squares method. In the case of unrestricted
diffusion of Mossbauer nuclei, that is, when {(dX(£))*)=2.0-D-t, with D the
diffusion coefficient, no essential complications arise. For this,

¥(w) = 0, ¥'(r) = ¥(r) = exp{- D1/x?}.

Thus, (4) is reduced to the second term only, and integration yields an equation of
type (5). In both cases, one deals with a Lorentzian spectral function, and searching
for W(¢) is quite a trivial problem.

From the early 1980’s, however, a great deal of experimental work has been
reported in which non-Lorentzian spectra were observed. The investigations were
conducted on objects with conformational mobility constrained to local diffusion
(proteins, polymers) [5—9]. If the correlation times of local diffusion are of the
order of T;!, the spectra are a superposition of narrow and wide non-Lorentzian
components. Using specific models for local steric diffusion, one can interpret the
experimental data in greater detail and obtain ¥ (¢) in an explicit form {11,14—17}.
Howevér, in such cases W(¢) is restricted to a class of functions which rely upon the
model used. Moreover, an analytically solvable expression for the integral of (1)
cannot be obtained even for the simplest model such as a Brownian oscillator. This
greatly complicates the choice of the optimum function, because the validity test of
each tentative function requires the numerical calculation of the integral. This may
also be expected to be the case with more complicated models.
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- Meanwhile, the correlation function of nucleus coordinates can be deter-
mined in a straightforward manner through the Fourier transform of the spectral
function g(w). The approach is the application to eq. (1) of methods used for solving
ill-conditioned problems [27]. Using the experimental Mdssbauer spectrum g(w), it
is possible to obtain through the Fourier transformation the experimental function
¥(1). It is then compared with the tentative model functions in order to arrive at the
optimal one. It is nonetheless important in this approach, from the very onset, that
the function ¥(¢) is independent of choice of this or that dynamical model. The
spectrum g(w) contains information about system dynamics. This information
becomes much more representative and clear when it is represented by the function
v (2).

In dealing with the experimental spectrum, we have eq. (1) in the form:

o0

N(=) - N(k) = C [ cos (wy, 1) ¥ (¢) exp(—T't/2)dz, (6)
0

where k is the channel number, £ € [—Kg, Kg], w, = K+-Aw, Aw is the frequency
spacing between the channels, K is the boundary channel number, N(o°) is the
background, N(k) is the set of observations in the kth channel, and C is the normal-
izing constant. For thin absorber T' = 2T, (in fact, I" is the line width for a low-
temperature spectrum T < 150 K). According to methods dealing with ill-conditioned
problems, in deriving ¥ (¢) the first step is to establish the regularizing operator (or an-
other physically justificated procedure) used to generate tentative functions R(?).
The tentative function exp {—I't/2}¥(f) will be sought for a series with a finite-
numbered set p; : |

N
R(®) = . 8 exp{—p,Tt/2}. | (7)
i=1

The adequacy of this formulation rests upon Muntz’s theorem [28, p. 53], which
states that if series Z, 1/p; is divergent, the series T ;a; XP? is convergent toward some
predetermined continuous function which can be found by suitably selecting factors
a; (in our case, X = exp { —I't/2}). After substituting (7) into (6), the right-hand side
of the equation splits into NV Lorentzian lines, each having areas {S,-} and line width
{p;T'}. The set {S,-} and value N(o°) can be easily found by a linear regression tech-
nique. The resultant algorithm applied to the experimental function N(k) leads to
an approximation close to exp { —T'#/2}¥(¢) in the form of series R(?). In fact, one
speaks of the Fourier analysis of Méssbauer spectra.

Because of the boundedness and discreteness of the domain of definition of
N(k) and because an error may arise in determining N (o), valid information on the
behavior of ¥ () is available only for the time domain
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KgAw\™! .
[ i , 2AwW) ] .

For each set {p, }, there is its own tentative function and model spectrum G(k).
We investigated the natural series {p;} = {d.i}, which obeys Muntz’s theorem, the
power series {p;} = {C-i®}, and the exponential series {p,} = {d-m'}. Although not
obeying Muntz’s theorem, the use of the last two series is physically justified, since
series composed of steeply broadening Lorentzian lines have a general appearance
resembling the function (N(ee) — N(k)) which descends steeply with k. That the
class of functions described by series R(¢) is consequently limited leads to stable
wings of the spectral function G(k). The selection of an optimal set{p;} involves
two steps. First, we find {p,} for which G(k) has the value of chi-square x? close
to 1.0:

Kp
X =3 X G - (1 - NRINCDIGE).
B x=-Kp

(The true spectral function satisfies the condition x? = 1.0 because the standard
- deviation of observation in the channel of interest is equal to the square root of
N(k).) The condition x? = 1.0 was satisfied by choosing a suitable number of terms
in series (7). It is important that the involvement of exponential lines for which
p;T' > 2Ky Aw caused no change in x2. Moreover, with regard to R(0), the para-
meter equal to the area under the model spectrum, the deviation of R(0) from ¥ (0)
increases for series {p;} extended beyond the domain bounded to 2K g Aw from above.

‘Among the series {p,} leading to spectra for which x2 = 1.0, the optimal set
was chosen from consideration of best smoothness of R(z). In practice, this reduces
to the minimization of the stabilizing functional [27]:

QURMD)) = ] (a(dR/d7)* + bR?)dt, ‘ (8)

0

where @ and b are constants.
For our case, the relation corresponding to (8) is

N Si'S‘ 1 + i -)
QRO = 3 ;(_pr’f L2y
i Pj

Lji=1

As a result of the foregoing treatment, the exponential series {p;} below with radix
2.0 was obtained as the most suitable:
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p;=1+2"M  i=1,...,N, M=4, )

where N is the number of terms by which the series can be extended without loss
of the condition 27V ¥ < 2Kz Aw]T. '

After the model spectrum G(k) has been constructed, i.e. the set{p;} and
value of N(e°) specified, it is possible to find the error with which the function ¥ (¥)
was found. To do this, a Gaussian noise with variance a® = G(k) is superposed upon
the model spectrum, and a new function R(?) is constructed. The scatter between
the R(¢) functions derived is the statistical error sought. It should be emphasized
that the resultant error does not arise from the method used. It depends on the noise-
to-signal ratio of the experimental spectrum.

In the foregoing, it has been assumed thatlow-temperature spectra(T < 150K)
are Lorentzian. The determination of ¥(f) by the proposed procedure involves the
determination of the width of low-temperature Lorentzian lines. In reality, the low-
temperature spectra are not Lorentzian because of the effects of the equipment and
other associated effects. At higher temperature, this may misrepresent information.
The problem is solved by deriving R(¢, T,) for one of the lower-temperature spectra
(T = T,). Then one has:

(@, T) = R, T) ' (T,)IR(, Tp). (10)

If f'(T,) is known, ¥(z, T), when calculated by (10), is automatically normalized.

To illustrate how the proposed method works, we shall analyze the RSMR
data for human serum albumin HSA [23]. Series {p,} was taken in the form of (9)
for N=9. The temporal course of correlator ([dX (£)]?) for temperatures 270,
280, 310 K are shown in fig. 1 (lines 1, 2, 3, respectively).

To describe the experimental data theoretically, we used a model incorporating
three types of motion: high-frequency motion with frequences w > T', local motion
with frequencies w < T, and quasi-diffusion. The latter is similar to unrestricted
diffusion on a time scale around 1078 s. Local motion was considered on a time scale
of correlation times of overdamped Brownian oscillators. The density distribution
function for inversal correlation time w, of Brownian oscillators was displayed as:

p(we) = d-wd ™ exp(~B ), (11)

where w, is the reciprocal correlation time, d is the normalizing factor, and «, § are
parameters of the model. Thus, the model correlator is composed of three terms
representing three types of motion:

([dX(@]* = X2 + q2(1 - (t_“ff)a) +2.D-t, | (12)
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Fig. 1. The temporal dependencies of the correlation function {[dX (1))?) for
coordinates of HSA atoms for T = 270, 280, 310 K (lines 1, 2, 3, respectively).

where X7 is the total mean-square displacement due to high-frequency motions with
w > 10% 57!, ¢g? is the total mean-square displacement due to all the oscillators
in distribution (11), and 2+ D+t is the contribution due to the quasi-diffusion.
Distribution (11) was chosen for two reasons. First, we wanted a distribution
with the minimum possible number of parameters that can model a large variety of
“bell-shaped” distributions. Secondly, a distribution of this kind permits the physical
interpretation in terms of the concept of a pencil of path for a conformational transi-
tion [30]. The domain of permissible values in the phase space of the five parameters
of the model function (12) for each temperature can be defined by minimizing the
deviation of the model function (12) from the experimental by amethod of conjugated
gradients. Within this domain, the variation of the parameter X{ was found to fall
within 20% around the mean. For T = 280 K, a pronounced minimum was found to
exist. It corresponds to nearly zero D and to a narrow p(w,.) distribution that
resembles the § -function, that is, the case of a single Brownian oscillator. Because at
T = 280 K D is equal to zero, one may expect it to be zero at a lower temperature too
(i.e. at T=270 K). On this assumption, the p(w,) distribution was derived for
T = 270 K and appeared to be broad. Probably, a distribution of this kind is a conse-
quence of the microheterogeneity of the system in the melting temperature range for
a water-protein system. Melting of bound water clusters that occur at temperatures
within this range changes the protein dynamics [31]. The statistics for the RSMR
spectrum for T = 310 K are insufficient to arrive at an unambiguous conclusion as
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to whether or not the distribution is broad. At this temperature, however, there is a
vast phase space of the admissible values of the parameters, where there is a distinct
minimum corresponding to a narrow p(cbc) distribution (this may also be the case
with a single Brownian oscillator) and to a relatively large diffusion coefficient.
Assuming that for T = 280 K and 310 K spatial motion can be modelled by a single
Brownian oscillator, we calculated the parameters D, X:, and 7, (X : is the mean-
square displacement and 7, is the correlation time of the Brownian oscillator) (table 1).
The values of the parameters of model (12) for 7 = 270K and D = 0.0 are represented
in table 1.

Table 1

Result of processing experimental correlation function {[dX(#)]*) for human
serum albumin for different temperatures (designation in text)

T @ 8 q° Xp  DX10% T, X3

(K) (nsec) (A%) (A?) (cm?/s) (nsec) (A%)

270 0.1 134 2.1 0.04 0.0 S -

280 - - - 0.23 0.0 21.2 0.49

310 - - - 063 3.8 11.5 0.29
Conclusions

A method of Mossbauer Fourier spectroscopy has been developed to determine
the correlation function of coordinates of a macromolecular system. The error in
determining the correlation function is not higher than the noise-to-signal ratio,
i.e. in the order of the product of amplitude and square root of the number of counts
per channel. The method requires no a priori dynamic model. This may, in turn,
facilitate the construction and analysis of dynamic models because of no necessity
of calculating the integral of (1) (most frequently by numerical methods).

The application of the method to the analysis of RSMR data for human
serum albumin (HSA) has demonstrated considerable changes in the dynamic behavior
of the protein globule when the temperature is changed from 270 K to 310 K. At
T = 270 K, the HSE dynamic behavior is characterized by a broad range of correlation
times. The heterogeneity of the system within the melting temperature range for the
water-protein system is most likely responsible for this. At 7 > 280K, the dynamics
of the globule may be interpreted, within the error of experiment, in terms of a
single Brownian oscillator model and unrestricted quasi-diffusion.

With increasing temperature, the correlation time of the Brownian oscillator
decreased and the diffusion coefficient increased from nearly zero at 7 = 280 K to
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3.8.1071° cm?s™! at T =310 K. For a limited time interval it is, unfortunately,
impossible to conclusively clarify the notion of unrestricted quasi-diffusion to be
able to distinguish between diffusion of the globule as a whole and local diffusion

with large correlations times. :

Noticeably, inherent in the system are motions with correlation times of
7 € 107 s whose amplitudes increase with T, reaching Xﬁ =0.63 A? at T =310K.
Thus, the main conclusion of the present work, which is of fundamental significance,
is the simultaneous observation of low-frequency (r~! ~T') and high-frequency
(77! »T') large-scale motions, that is the two-humped distribution of correlation
times of protein motions. As follows from [18], the quasi-diffusion observed in the
preparation under study is most likely to be due to the local diffusion of protein
fragments having relaxation times of 7 ~ 10™7 s. Note in conclusion that the proposed
method works best of all with spectra having a low noise-to-signal ratio.
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