
Rep. Prog. Phys., Vol. 47, pp 1-46, 1984. Printed in Great Britain 

Protein dynamics 

J A McCammon 
Department of Chemistry, University of Houston, Houston, Texas 77004, USA 

Abstract 

The biological activity of protein molecules depends on their structural fluctuations. 
Recent theoretical studies have helped to clarify the nature and function of these 
fluctuations. Because proteins are large densely-packed structures, their atomic 
motions can be compared to those that occur in other dense materials. Small motions 
at short times are similar to what is observed in liquids. Larger motions in proteins 
are opposed by the forces that stabilise their native structures, resulting in solid-like 
features. Of special importance is the strong coupling observed between local and 
collective displacements; this coupling governs the character of many ligand-binding 
processes and structural transformations that are essential to biological function. 

This review was received in June 1983. 
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1. Introduction 

I. 1 .  Protein function 

Globular proteins are essential components of all living organisms. These molecules 
are responsible for a remarkably wide range of biological functions, as may be seen 
by listing a few of the major groups within this vast family. Enzyme molecules are 
proteins that catalyse biochemical reactions. They act to build the structural elements 
of organisms and to provide the energy necessary for life processes. Familiar examples 
include the digestive enzymes that degrade foodstuffs to simple, assimilable compounds; 
the biosynthetic enzymes that build complex molecules from simpler compounds; and 
muscle proteins that produce mechanical work from chemical reactions. Transport 
proteins such as haemoglobin facilitate the movement of molecular oxygen and other 
essential compounds to their sites of utilisation. Antibody molecules are proteins that 
bind to and neutralise foreign materials that may be harmful to an organism. Other 
globular proteins play essential roles in genetic expression, nerve conduction and all 
other biological processes. 

An important characteristic of proteins is their specificity of function. A particular 
enzyme will bind specific substrate molecules and catalyse a specific chemical transfor- 
mation of the substrate. A particular antibody molecule will bind specific antigens. 
For many proteins, this specificity of action is so narrowly defined that a small change 
in a ligand molecule that binds strongly to the protein (e.g. replacement of a hydrogen 
atom by a methyl group) leads to a dramatic reduction in binding. A number of 
proteins also display regulatory character. For example, their primary activity may 
be increased or decreased by the binding of specific auxiliary ‘effector’ ligands. Together 
with the spatial ordering of proteins imposed by the anatomy of an organism, the 
specificity and regulation of protein function are largely responsible for the required 
coherence of biochemical processes. 

1.2. Protein structure and dynamics 

Given the functional richness of proteins, one would expect to observe a corresponding 
complexity in the detailed structure of these molecules. This expectation has been 
confirmed by x-ray diffraction studies, which have provided the crystal structures of 
more than 100 proteins during the past 25 years (Bernstein et al 1977, Richardson 
1981). Proteins are very large molecules; their molecular weights are often in the 
tens of thousands. The basic component of these molecules is the polypeptide chain, 
an unbranched polymer consisting of a sequence of amino-acid residues. There are 
20 commonly occurring amino acids, and a typical chain will contain a few hundred 
of these elementary structural units. Protein molecules consist of one or a small number 
of such polypeptide chains, complemented in some cases by one or more ‘prosthetic’ 
groups (e.g. metal ions or special organic molecules). For a given globular protein, 
the polypeptide chain of each molecule is folded compactly into a characteristic 
three-dimensional structure. Although the resulting structures are complicated, it is 
commonly observed that the packing density of the protein components is nearly 
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maximised, subject to the requirement that those amino-acid residues which have a 
favourable free energy of interaction with water tend to remain near the protein surface 
(Richards 1977). In many cases, it has been possible to carry out x-ray diffraction 
studies of globular proteins with bound ligands (e.g. substrate analogues). These studies 
show that the folding of a protein is such that key amino acids with chemically active 
groups are strategically located in a well-defined ‘active site’, where the groups can 
interact in a coordinated fashion with the ligand. Such studies have been invaluable 
in the development of structural interpretations of protein function. 

During the past six or seven years, increasing attention has been focused on the 
dynamic aspects of protein structure and function. It has long been inferred from a 
variety of experimental studies that substantial structural fluctuations occur in proteins, 
and that these fluctuations are essential to protein function (Edsall 1968, Careri et a1 
1975, Weber 1975). Until recently, the exact nature of the structural fluctuations has 
proved elusive. The recent surge of interest in protein dynamics has largely been 
stimulated by theoretical studies that have provided a detailed picture of the atomic 
motion in proteins. These theoretical studies are the primary focus of the present 
review. The theoretical work on proteins involves a combination of methods from 
theoretical chemical physics and protein structure theory. The methods from chemical 
physics include techniques that have been used successfully in the past to study atomic 
motion in dense materials such as liquids and solids. These methods are appropriate 
in view of the high density and large size of globular proteins. Along with the theoretical 
developments, new experimental techniques that provide detailed insights to  protein 
dynamics have become available. Indeed, the present robustness of this field is largely 
a result of the interplay of modern theoretical and experimental work. Theory has 
successfully predicted a number of fundamental properties such as the average magni- 
tude of atomic thermal displacements, the variation of these magnitudes throughout 
a protein and the time scales of certain group displacements. Recent experiments have 
presented new challenges (e.g. concerning solvent effects on protein dynamics and 
function (Beece et a1 1980)) that are stimulating further theoretical work. The results 
achieved during the past few years and the history of corresponding efforts for systems 
such as simple liquids both suggest that the theoretical work on proteins will become 
increasingly sophisticated and useful in the coming years. 

1.3. Scope of this review 

The number of publications on dynamic aspects of protein structure and function is 
growing at an extraordinary rate. The present review is not intended to provide an 
all-inclusive catalogue of this activity. It is rather intended to provide a reasonably 
self-contained introduction to  the theoretical foundations of the subject, and to  high- 
light a representative selection of important new theoretical results within an integrated 
framework. The reader may wish to consult other recent reviews for additional material 
(Careri et a1 1979, McCammon and Karplus 1980a, 1983, Karplus and McCammon 
1981a, b, 1983, Levitt 1982, Welch et al 1982, van Gunsteren and Berendsen 1982). 
A limited number of experimental results are also described to illustrate the types of 
data available and the degree of overlap with the theoretical results. Again, excellent 
reviews that focus on various aspects of the experimental work have recently been 
published (Campbell et al 1978, Peticolas 1978, Woodward and Hilton 1979, Gurd 
and Rothgeb 1979, Williams 1980, Karplus and McCammon 1981a, Jardetzky 1981, 
Cooper 1981, Debrunner and Frauenfelder 1982, Hilinski and Rentzepis 1983, Huber 
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and Bennett 1983). A useful, brief introduction that will be of particular interest to 
physicists has been presented by Frauenfelder and Marden (1981). 

2. Protein structure 

2.1. Polypeptide chain 

The structure of a short section of polypeptide chain is illustrated in figure 1. The 
polypeptide chain is intrinsically flexible because many of the covalent bonds that occur 
in its backbone and sidechains are rotationally permissive. The residues of which the 
polypeptide is composed are chosen from the 20 commonly occurring amino acids. A 
given protein is characterised by a definite sequence of residues; this is termed the 
primary structure of the chain. The amino-acid residues are distinguished by the 
structures and chemical properties of their sidechains. The sidechains can be divided 
into two broad classes. Sidechains that are relatively soluble in water are termed 
hydrophilic, while those that are less soluble in water are termed hydrophobic. The 
hydrophilic sidechains include electrically charged groups (acidic groups or basic groups, 
which typically bear a full negative or positive charge, respectively) and neutral groups 
with a substantial electric-dipole moment. The hydrophobic sidechains are neutral 
and relatively non-polar. 
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Figure 1. Structure of the polypeptide chain. The backbone or main chain is shown in ( a ) .  The covalent 
bonds and bond angles are rather rigid, but sizeable rotations can occur around certain bonds. The dihedral 
angles pi and Jli measure the torsion about the rotationally permissive bonds in the backbone of residue i. 
The dihedral angles wi exhibit little variation because the C-N bond has partial double-bond character; 
each peptide group (CONH) and its adjoining C" atoms therefore tend to remain in a common plane. The 
labels Ri represent the sidechains, one of which is shown in detail in ( b ) .  This tyrosine sidechain has two 
rotationally permissive bonds; the corresponding dihedral angles are ,yl and x2. The ring remains relatively 
flat due to partial double-bond character in its C-C bonds. 

2.2. Chain folding and interactions 

As has been mentioned, the polypeptide chain of a given type of protein folds into a 
characteristic 'native' three-dimensional structure in water. For simple proteins, this 
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folding is a spontaneous process (Kim and Baldwin 1982). In this subsection, we 
mention the principal interactions that stabilise the native structure. Of special import- 
ance are two types of interaction between the polypeptide and the surrounding water. 
The first of these is the so-called 'hydrophobic interaction', which causes hydrophobic 
sidechains to tend to cluster together in the protein interior. This entropy-driven effect 
is due to the restrictions on the allowed orientations of water molecules adjacent to 
a hydrophobic group (Stillinger 1980). The tendency of hydrophobic groups to cluster 
together is quite strong (Cantor and Schimmel 1980). Removal of a single methyl 
group from water to a non-polar region in the protein interior results in a net free 
energy of stabilisation of the order of 10 kJ mol-'. This effect is important because a 
large fraction of the residues in a typical protein are hydrophobic. The second type 
of solvent interaction, that between charged groups and water, has an opposite character 
(Mao et al 1982b). Due to the large dipole moments of its molecules, liquid water 
has a high dielectric constant. Charged groups will therefore be attracted into the 
water and away from the protein interior, which has a relatively low dielectric constant. 
A typical protein has a relatively small fraction of charged residues, but the magnitude 
of this interaction makes the effect important. Transfer of a small hydrated ion from 
water to the protein interior would have a free energy cost of the order of 30 kJ mol-'. 

In addition to the polypeptide-solvent interactions described above, a number of 
important interactions between non-bonded atoms of the polypeptide help to determine 
the native structure of a protein. One of these is the Coulombic interaction between 
partial electrical charges on the polypeptide atoms. The most important interaction 
of this type is hydrogen bonding (Schulz and Schirmer 1979). When a hydrogen atom 
is bonded to oxygen, nitrogen or certain other electronegative atoms, the bonding 
electron density is largely shifted onto the heavier atom. The hydrogen is left with a 
significant partial positive charge and can approach other atoms relatively closely 
because of the drawn-in character of its electron cloud. Such a hydrogen atom can 
therefore have a strong electrostatic attraction for other oxygen or nitrogen atoms; 
such interactions are termed hydrogen bonds. For a hydrogen bridging two oxygen 
atoms, the maximum interaction amounts to about 20 kJ mol-' when the oxygen atoms 
are separated by 0.28 nm; the interaction becomes neglible for oxygen distances greater 
than 0.4 nm. One effect of hydrogen bonding is to restrict the possible arrangements 
of hydrogen bonding groups in the protein interior. These groups must interact with 
one another in such a way that the loss of hydrogen bonds to solvent water molecules 
(which can act as hydrogen bond donors or acceptors) is compensated by the formation 
of internal hydrogen bonds in the folding of the protein. For the protein backbone, 
such arrangements often result in the formation of what are termed elements of 
secondary structure (Schulz and Schirmer 1979, Cantor and Schimmel 1980). A 
familiar example is the alpha helix, in which the peptide oxygen of residue i forms a 
hydrogen bond with the peptide nitrogen of residue i+4.  Another example is the 
beta sheet structure, in which extended strands of the polypeptide chain lie next to 
one another and are cross-linked by hydrogen bonds between their peptide groups. 

Finally, there are the important, non-specific van der Waals interactions between 
non-bonded atoms in the protein. This type of interaction is initially attractive for 
approaching atoms, and then becomes steeply repulsive as the electron clouds of the 
atoms begin to overlap substantially. Considering two methyl groups, a maximum 
stabilisation of the order of 1 kJmol-' is obtained when the two carbon atoms are 
separated by 0.42 nm; reducing this distance by 0.05 nm results in a destabilisation of 
the order of 10 kJ mol-'. To compensate for the loss of attractive van der Waals 
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interactions with solvent molecules in the folding process, the atoms in the protein 
interior tend to pack together quite closely. 

The three-dimensional arrangement of the groups in the native protein is termed 
the tertiary structure of the molecule. This structure represents the optimum balance 
among the various interactions described above. Typical features include the clustering 
of hydrophobic sidechains in several regions of the protein interior. Charged sidechains 
tend to remain exposed to  the solvent at the protein surface; the few charged groups 
observed in protein interiors are usually paired with oppositely charged groups. Sec- 
tions of the polypeptide backbone that are buried in the protein interior typically form 
secondary structure to  compensate for the loss of their hydrogen bonds with solvent 
water molecules. The packing density of the atoms is quite high, particularly in the 
hydrophobic clusters where non-specific interactions predominate. The high packing 
density is clear in space-filling representations of protein structure (figure 2). 

Figure 2. Space-filling representation of the native structure of a relatively small protein, cytochrome c. 
The sizes of the atomic spheres correspond to the distances of closest approach allowed by the van der 
Waals forces between non-bonded atoms. (Photograph courtesy of Richard J Feldmann, NIH.) 

2.3. Model potential energy functions 

More quantitative descriptions of the interactions that stabilise the native structure of 
a globular protein are provided by expressions that give the potential energy of the 
molecule as a function of its atomic positions. Ideally, such a function could be obtained 
by quantum-mechanical calculations using the Born-Oppenheimer approximation. 
That is, the ground-state energy of the molecule would be computed at every possible 
set of atomic positions. Such calculations are, however, not yet feasible for molecules 
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as large as proteins. A practical alternative is to construct model potential energy 
functions of the ‘molecular mechanics’ type (Schulz and Schirmer 1979, Cantor and 
Schimmel 1980). In this approach, one specifies a form for the potential function that 
is a sum of types of terms often used in the description of simpler systems. A typical 
model potential function has the form 

v = ;  ~ ~ ( b - b ~ ) ’ + ;  C K,(e-eO)’+; K , [ I + c o s ( ~ ~ ~ - s ) ]  
bonds bond dihedral 

angles angles 

+ C ($-$+E) 
non-bonded 

pairs 

The first sum includes a term for every covalent bond in the protein. Each bond is 
treated as a simple Hookesian spring with a characteristic force constant and equilibrium 
bond length; this is a very good approximation at normal biological temperatures 
where the bond length fluctuations will be quite small. The second term accounts for 
the deformation energy of angles between the covalent bonds to a given atom, and 
the third term represents the intrinsic deformation energy for twisting about an axis 
through covalently bonded atoms. Together, these three sums account for variations 
in the covalent bonding energy of the protein. The remaining sum corresponds to the 
van der Waals and Coulombic interactions described in the previous subsection; these 
interactions are particularly important determinants of protein structure due to the 
high packing density in proteins. The parameters that appear in a model potential 
function (e.g. the force constants and equilibrium bond lengths) are obtained from 
experimental and quantum-mechanical studies of small molecules that are chemically 
similar to segments of the protein. 

Model potential energy functions such as that described above have two advantages 
over those that would be obtained from a full quantum-mechanical calculation. First, 
the energy can be computed very rapidly for a given configuration of atoms. This 
makes possible a determination of the relative stability of different possible protein 
conformations. Second, the simple form of the function allows one to write down 
analytic expressions for the spatial derivatives of the energy. Thus, the forces acting 
on the atoms of the protein can also be computed very rapidly. These advantages 
have led to the use of similar model potential functions in the analysis of vibrational 
spectra of small molecules (Wilson et a1 1955) and the computer simulation of atomic 
and molecular liquids (Hansen and McDonald 1976). 

As it stands, an equation such as (2.1) is strictly appropriate only for a protein in 
a vacuum. Such an equation is nevertheless useful in the analysis of small structural 
changes in the interior of a globular protein. More generally, it is necessary to 
incorporate the effects of the solvent surroundings. This can be done in one of two 
ways. More approximate, but less demanding of computation time, is the adjustment 
of the energy function parameters to reflect the average effects of the solvent surround- 
ings. In terms of statistical mechanics, this corresponds to replacing the potential 
energy function by a potential of mean force that is averaged with respect to the 
possible configurations of the water molecules that surround the protein (Lifson and 
Oppenheim 1960). The potential of mean force is a type of free energy and is dependent 
on temperature (McQuarrie 1976). Among the parameter adjustments that have been 
used are the following. For the Coulombic interaction between two atoms, the dielectric 
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constant D has been set equal to the magnitude of the separation of the atoms expressed 
in Angstrom units (1 A = 0.1 nm) (McCammon et a1 1979). Physically, this corresponds 
to the tendency of the field lines connecting interior atoms to spread into the high 
dielectric solvent region as the atoms are drawn apart. In some calculations, this 
modification has been supplemented by a reduction of the charges of atoms near the 
protein surface because the field lines between such atoms always extend into the 
solvent region (Northrup et a1 1981). Another modification that has occasionally been 
used is the elimination of the attractive part of the van der Waals energy for non-bonded 
interactions that involve a hydrophilic group; the remaining net attraction between 
hydrophobic groups reflects the expected tendency of such groups to aggregate in 
water (Mao et a1 1982b). Some effort has been devoted to the development of 
‘solvation shell’ models that should allow a more quantitative description of this type 
of effect (Paterson et a1 1981). In principle, the most satisfactory representation of 
the solvent surroundings of the protein would be obtained by explicit incorporation 
of solvent molecules in the basic model (Wood 1979). The water molecules would 
then be treated on the same level as groups within the protein and represented by 
additional terms in the model potential function. This approach has been fully realised 
in a small number of very recent studies; the encouraging results obtained and 
improvements in computer technology are likely to make this a popular approach in 
future work (van Gunsteren et a1 1983). Although considerably more computer time 
is required, this approach allows a detailed analysis of the structural and dynamical 
effects of solvent upon the protein surface. 

3. Overview of dynamics 

3.1. Length and time scales 

As is illustrated in figure 1, a polypeptide chain consists of a large number of groups 
linked by covalent bonds that are intrinsically permissive of rotation. The groups 
linked by such bonds are themselves comparatively rigid and constitute the fundamental 
dynamical elements in a protein molecule. Examples of such groups are the CONH 
peptide groups that link successive residues and the ring in the tyrosine sidechain 
(figure 1). The typical thermal motions observed within a protein are dominated by 
the torsional oscillations of these groups about the single bonds that link them together. 

Table 1. Typical features of some internal motions of proteins. 

lg of 
Spatial Amplitude characteristic 

Motion extent (nm) (nm) time (s) 

Relative vibration of bonded atoms 
Elastic vibration of globular region 
Rotation of sidechains at surface 
Torsional libration of buried groups 
Relative motion of different globular regions 
(‘hinge-bending’) 
Rotation of medium-sized sidechains in interior 
Allosteric transitions 
Local denaturation 

0.2-0.5 
1-2 
0.5-1 
0.5-1 
1-2 

0.5 
0.5-4 
0.5-1 

0.00 1-0.0 1 
0.005-0.05 
0.5-1 
0.05 
0.1-0.5 

0.5 
0.1-0.5 
0.5-1 

-14 to -13 
-12 to -11 
-11 to -10 
-11 to -9 
-11 to -7 

-4 to 0 
-5 to 0 
-5 to + I  
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Within such groups, only small atomic displacements occur due to the large energy 
cost of deforming bond lengths, bond angles and dihedral angles about multiple bonds. 
Superposition of the rigid group oscillations yields a remarkably rich dynamical 
spectrum that ranges from the rapid local motions of the individual groups to slow 
collective distortions of large regions within the molecule. Some of the motions that 
occur are indicated in table 1 ;  these motions will be considered in more detail in 
what follows. 

3.2. Comparison with motions in other dense materials 

Because of the high packing density in protein molecules, their atomic motion displays 
certain similarities to  that seen in other dense materials. Over short periods of time 
(less than 0.5 ps), the small-amplitude motions display similarities to  the motions of 
molecules in a simple liquid (Hansen and McDonald 1976, Chandler et al 1983). Each 
group is temporarily trapped, rattling in a cage that consists of other groups in the 
protein and (at the surface of the protein) molecules of the surrounding solvent. The 
cage atoms are, of course, not stationary. They frequently collide with the encaged 
group, rapidly randomising its motion. Such collisions are the microscopic basis of the 
frictional effects that limit the rate of net displacement of the group. 

For many processes with longer characteristic times, solid-like components of 
motion appear in the dynamics of the protein. Such components are expected, because 
the atoms of the protein have definite average positions corresponding to the native 
molecular structure. Because of the interactions that maintain this structure, the 
protein matrix displays only limited compliance in the larger deformations that occur 
at long times. The solid-like aspects of protein behaviour appear on both the local 
and global scales. Local group motions of large amplitude are typically opposed by 
substantial restoring forces associated with the distortion of the cage surrounding the 
group. Consider, for example, the rotational isomerisation of a tyrosine ring (figure 
1) corresponding to a 180” change in ,y2. If the ring is located in the interior of a 
protein, a number of protein atoms are located in the volume that would be swept 
out by the ring during this rotation. The necessary displacement of these cage atoms 
associated with ring rotation produces substantial strain energy in the protein matrix; 
thus, there is a large energy barrier to the rotation of the ring (Gelin and Karplus 
1975, McCammon et a1 1983). A similar situation occurs in the movement of small 
molecules from one site to another within a protein. Such movements are of biological 
importance in the binding of oxygen to myoglobin or haemoglobin, a process that has 
been studied extensively in elegant experiments by Frauenfelder and co-workers 
(Debrunner and Frauenfelder 1982) and calculations by Case and Karplus (1979). 
The rate of such movements is again limited by energy barriers of steric origin. The 
underlying mechanism is quite similar to that which obtains for vacancy diffusion in 
crystals, i.e. hopping from one site to another with a strained intermediate state 
(Bennett 1975). In certain large-scale motions, the distortion of the protein is dis- 
tributed over many residues and the relative displacements of neighbouring atoms are 
small. The protein can then be pictured as behaving somewhat like a continuous, 
elastic material. For a compact, globular protein, one simple example would be a 
‘breathing’ motion analogous to the fundamental mode of radial oscillation of a sphere 
(de Gennes and Papoular 1969, Suezaki and Gb 1975). Another example is the 
‘hinge-bending’ motion that occurs in proteins having two globular regions that are 
linked by a region having a smaller cross section (McCammon e& a1 1976). In these 
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types of motion, the protein may display a simple Hooke’s law character. Such motions 
typically display significant damping due to the solvent surrounding the protein. 

As has been mentioned, both frictional forces and mechanical restoring forces play 
roles in the dynamics of proteins. The relative importance of these forces depends on 
the particular physical process considered. For local oscillations about a stable confor- 
mation, both underdamped and overdamped motions occur. Examples include the 
underdamped vibrations of covalent bonds (a result of the large restoring forces 
together with the small size of the structural units and correspondingly small frictional 
effects involved) (McCammon 1976, McCammon et a1 1977), the nearly critically 
damped oscillations of tyrosine rings relative to their cages (McCammon et a1 1979) 
and the overdamped collective distortions of hydrophobic clusters within a protein. 
Global distortions of the hinge-bending type are typically overdamped because of the 
large surface displacements and solvent damping involved (McCammon et a1 1976, 
McCammon and Wolynes 1977). Other global motions, such as the breathing modes 
of individual globular regions, may be underdamped (de Gennes and Papoular 1969, 
Suezaki and Gb 1975). A similar spectrum of behaviour obtains for structural transi- 
tions from one stable conformation to another. The rotations of tyrosine rings over 
the large barriers imposed by the protein matrix are of predominantly inertial character, 
although frictional effects reduce the rate of such transitions (Northrup et a1 1982a). 
Frictional effects are often dominant in transitions that involve larger groups or smaller 
energy barriers. Simple examples include the rotation of sidechains at the protein 
surface (where the substantial restoring forces associated with a protein matrix are 
absent) (Levy et a1 1979) or the unwinding of regions of the polypeptide chain from 
the protein surface (local ‘denaturation’) (McCammon et a1 1980). Another important 
example is the initial diffusional encounter between a protein molecule and a ligand 
molecule with which the protein must interact in biological processes. Such encounters 
typically involve relatively weak mechanical interactions between the protein and the 
ligand, but are subject to substantial solvent frictional effects (Wolynes and McCammon 
1977). 

The phenomena described above can be characterised in more quantitative fashion 
by the use of phenomenological models of the motion. Such models have a long history 
in the analysis of liquids, polymer solutions and other dense materials. One such model 
is summarised by the Langevin equation of motion (Chandrasekhar 1943, McCammon 
et a1 1979). For a single coordinate (e.g. one component of the centre-of-mass vector 
of a group in the protein), the equation takes the following form: 

d2x dx m-= F ( x )  -f-+R(t) 
dt2 dt  (3.1) 

Here, m and x are the mass and position of the group, respectively, and t is the time. 
The term F ( x )  represents the effective mechanical restoring force acting on the group. 
The terms --f dx/dt and R( t )  represent the direct effects of rapidly varying forces 
acting on the group (e.g. those due to collisions); the first term is the average frictional 
force due to the relative motion of the group through its surroundings (f  is the friction 
coefficient) and R ( t )  represents the remaining randomly fluctuating force. This model, 
and other phenomenological models (e.g. the diffusion equation and the Kramers and 
transition-state theories for the crossing of energy barriers), will be considered in more 
detail later. All of these phenomenological models incorporate effective restoring and 
frictional forces without attempting a detailed description of the microscopic origin 
of these forces. These models are of great value in the analysis of protein dynamics. 
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By using such models, one can focus on particular motions, assign definite magnitudes 
to the various forces involved and develop simplified physical pictures that help to deepen 
our understanding of the dynamics. Analysis of protein dynamics by use of a 
phenomenological model is often a helpful intermediate step before analysis by use of 
more detailed microscopic theories. Phenomenological models are also of value as a 
basis for simplified simulation studies of protein dynamics. For example, if one has 
available (e.g. from the Stokes and Einstein relationships) estimates of the diffusion 
constants of key particles in an overdamped system, then one can generate typical 
motions of these key particles without having to follow every detail of less interesting 
particles in their surroundings. Such ‘stochastic’ dynamics simulation methods will be 
described more fully in a later section. 

4. Fast motions 

4.1. Methods 

Two theoretical methods have been used to study the details of motions in proteins 
with characteristic times less than about 10 ps. The first method is molecular dynamics 
simulation, in which the classical equations of motion for the atoms in the system are 
solved by numerical techniques for time intervals of 10-loops (McCammon et a1 
1977, 1979). The second method is the normal-mode approach, in which the motion 
is described as a superposition of harmonic vibrations whose frequencies are determined 
by the multidimensional parabolic shape of the potential surface near an energy 
minimum (Levy et a1 1982b, G6 et a1 1983). The normal-mode approach has the 
advantage that, once the modes of vibration are determined, many time-average and 
dynamic properties can be computed easily by analytic techniques. Also, the separation 
of actual motions into their principal normal-mode components may be helpful in the 
analysis of protein dynamics. The normal-mode approach has two major disadvantages 
relative to the dynamical simulation approach, however. The matrix eigenvalue calcula- 
tions that are required for determination of the normal-mode displacements and 
frequencies are not possible for systems having more than a few hundred coordinates. 
This difficulty can be circumvented by simplifying the system or using special techniques 
to extract selected normal modes. A more fundamental difficulty is that anharmonic 
effects are known to be important in protein dynamics at room temperature. That is, 
the system moves on regions of the potential surface that are poorly approximated by 
parabolic extrapolations from the region of a local minimum. We will therefore focus 
primarily on molecular dynamics results in what follows. 

A variety of specific algorithms have been used in dynamical simulations of protein 
molecules. These include the algorithms due to Gear, Verlet and Beeman that have 
been used in simulation studies of simpler systems (McCammon and Karplus 
1980a, b, Levitt 1982). In some calculations, modified algorithms have been used 
to hold bond lengths fixed at their ideal values during the numerical integration of 
the atomic equations of motion (van Gunsteren and Karplus 1982a). This has an 
insignificant effect on the resulting dynamics but affords some savings in computer 
time. The corresponding freezing of bond angles produces significant distortions of 
the resulting atomic motions. 

In a typical simulation, one begins with an x-ray structure for the protein of interest. 
The atomic positions are usually adjusted by use of an energy minimisation algorithm 
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to relax any large stresses in the initial structure. If solvent is included, the solvent 
atoms may be located initially near regular lattice points or at positions derived from 
a simulation of the pure solvent. Solvent molecules that overlap with atoms from the 
protein are excluded in this initial structure. Prior to the actual simulation, the system 
is equilibrated to ensure that the atoms have representative velocities and are subject 
to representative forces at the beginning of the simulation. Typically, the equilibration 
process involves atomic velocity reassignment from Maxwellian distributions for 
increasing temperatures alternated with short periods of dynamical propagation 
(Northrup et a1 1981). When the system is equilibrated at a desired temperature, the 
dynamical propagation is continued for a period of 10-100 ps to produce the trajectory 
for analysis. 

4.2. Single group motions 

Many common features are apparent in the dynamical simulations that have been 
studied to date. The atomic displacements are larger near the surface of the protein 
than they are in the interior. For cytochrome c at 300 K, the average root-mean-square 
(RMS) position fluctuation of the atoms is of the order of 0.05 nm in the protein interior 
(Northrup et a1 1981). This average remains nearly constant with increasing distance 
from the protein centre until the region of the rough molecular surface is reached. In 
this exterior region of the protein, the average RMS position fluctuation of the atoms 
grows rapidly to values of the order of 0.1 nm. The increased magnitude of the exterior 
fluctuations is due to the diminished steric constraints associated with the irregular 
topography of the surface. Similar results have been obtained in molecular dynamics 
studies of other proteins; for example, the largest motions in the small protein BPTI 
occur in loops of the polypeptide chain at the surface of the protein (McCammon et 
a1 1977, van Gunsteren and Karplus 1982b, Swaminathan et a1 1982). Another 
important generalisation is that the RMS position fluctuations of the atoms are larger 
in sidechains than in the backbone of the protein. Moreover, within a typical sidechain, 
the fluctuations become larger as one moves along the sidechain away from the 
backbone. 

The motion of a typical atom in the protein is quite anisotropic (Northrup et a1 
1981, Morgan et a1 1983). That is, the displacements are significantly larger in some 
directions than in others. The anisotropy can be described quantitatively in terms of 
the mean square displacement matrix of each atom. The mean square displacement 
matrix for a particular atom is (Willis and Pryor 1975) 

(AxAx)  ( A x A y )  (AxAz) I ( A Y W  (AYAY) ( A Y W  ' i ( A Z A ~ )  ( A ~ A Y )  ( A Z A ~ ) ~  

where Ax, Ay and Az are the displacements of the atom from its mean position along 
the x, y and z axes, respectively, and the angular brackets indicate time averages. The 
sum of the diagonal elements is equal to the mean square position fluctuation of the 
atom. For each atom, a rotated set of Cartesian axes can be defined in which the mean 
square displacement matrix is diagonal; these axes are the principal axes of the matrix 
(Willis and Pryor 1975). The three elements of the diagonalised matrix are the matrix 
eigenvalues. Each eigenvalue is equal to the mean square fluctuation of the atom 
along one of the principal axes. For cytochrome c, the ratio of the mean square 
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Figure 3. Thermal ellipsoids representing the position fluctuations of the atoms in the leucine-32 residue 
of cytochrome c, based on a molecular dynamics simulation (Morgan et a/  1983). The lengths of the 
principal semiaxes correspond to ( a )  the RMS fluctuations observed during periods of 32 ps and ( 6 )  twice 
the RMS fluctuations observed during a period of 0.2 ps. The importance of collective motion during the 
longer time period is evident in the similar orientations of the longest axes of a number of atoms. 

displacements along the axes of largest and smallest displacement is about 0.25 for a 
typical atom; the range of such ratios observed is 0.03-0.68 (Northrup et a1 1981). 

For certain classes of atoms, the direction of preferred displacement can be corre- 
lated with the local protein structure (Morgan et al 1983). An example is shown in 
figure 3(a) .  The atoms CD1 and CD2 at the end of the sidechain have major axes 
that are roughly consistent with rotational oscillations about the single bond between 
the CB and CG atoms. In general, however, the directions of preferred displacement 
are determined by collective motions that are unrelated to local bonding; this effect 
is discussed below. 

As mentioned before, the atomic motion in proteins is substantially anharmonic 
at room temperature. This can be seen directly by calculating moments of the atomic 
position distribution functions. For harmonic motions, the atomic position distribution 
functions will be Gaussian. In this case, the first few moments of the position distribution 
functions along a given direction satisfy the following equalities: 

 A AX)^) = 0 

 A AX)^) =  A  AX)')'. (4.1) 

Calculations based on molecular dynamics simulations of cytochrome c show that one 
or both of these equalities are substantially violated for about half of the atoms in the 
protein (Mao et al 1982a). Morever, the anharmonic effects are related eo the 
anisotropy; for a typical atom, the anharmonic efiects are largest for motion in the 
direction of largest displacement. The atoms with largest anharmonicity fall into two 
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classes. In the first class are those atoms whose effective potential wells are distorted 
toward a square well shape. This is especially common near the surface of the protein 
or at the ends of sidechains, where structural constraints are expected to be small. 
The second class includes those atoms whose effective potentials have multiple minima 
separated by barriers greater than or equal to about 2 kJ mol-’. 

The importance of anharmonic effects in protein dynamics has also been shown in 
a recent study of the shape of the potential surface of BPTI near an energy minimum 
corresponding to the native state (Gb et a1 1983). In this study, a normal-mode 
calculation was first carried out in the dihedral angle space of the protein. The atomic 
positions were then displaced in accordance with each normal mode; the actual potential 
energy of the distorted protein was calculated and compared with that obtained by a 
quadratic fit to the surface near its minimum. For displacements of typical thermal 
magnitude, significant differences in the two energies were found for the softest 
directions. Of the 36 modes with frequencies below v = 10” s-l, only one is close to 
being harmonic. These iow-frequency anharmonic modes were found to dominate the 
dtomic displacement magnitudes. Superimposed on these low-frequency motions are 
localised motions with higher frequency and smaller amplitude; these localised motions 
are more harmonic in character. 

Also of interest is a recent study of the decaglycine alpha helix (Levy et al 1982b). 
Here, the atomic position fluctuations from a molecular dynamics simulation (reflecting 
motion on the true potential surface) were compared with those from a normal-mode 
calculation. Substantial anharmonicity was apparent even in this comparatively rigid 
element of secondary structure. At room temperature, the mean square displacements 
observed in the dynamical simulation are approximately twice as large as those in the 
corresponding harmonic model. Again, detailed anaiysis showed that the iow- 
frequency motions are primarily responsible for the atomic displacements and display 
the largest anharmonicities. 

The preceding discussion has only considered time-average properties of the atomic 
displacements. In considering the time dependence of the atomic motions, it is appropri- 
ate first to examine the dependence of the apparent amplitude of atomic motion upon 
the observation period (Morgan et a1 1983). The RMS displacements of the protein 
atoms approach their limiting values in a time of the order of 10-20 ps. About one-half 
of this limiting value is achieved in a time of 1 ps. For the short-time (less than 1 ps) 
position distribution functions, the anisotropy of atomic displacement is simply related 
to the local bonding. That is, the atomic displacements are dominated by local rotations 
about single bonds. This result is quite apparent in figure 3(bj. These correlations 
are largely washed out by collective motions in the protein at longer times, as is 
apparent in figure 3(a) .  

More detailed information on the dynamics of short-time motions can be obtained 
by calculation and analysis of appropriate time correlation functions (McCammon 
1976, McCainmon et a1 1977, Swaminathan et a1 1982). The time correlation functions 
for displacements of atom positions or for rotations about single bonds typically indicate 
the presence of different processes occurring on two or more different time scales. 
These time correlation functions generally decay significantly in the first 0.2 ps. During 
the subsequent 1-2 ps, a variety of behaviours are observed, ranging from slow, nearly 
monotonic decay tu damped oscillation ( v  6 10” s-l). Inclusion of the solvent sur- 
roundings in the simulation results in some slowing of the motion (correlation times 
increase by a factor of two or so), but relatively little change in amplitude (Swaminathan 
et a1 1982). 
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4.3. Collective contributions to local motions 

Several of the results described in the previous subsection indicate that collective 
motions are of importance in protein dynamics. For example, collective motions are 
suggested by the collinearity of the preferred axes of displacement of a number of 
atoms in figure 3(a). Another indication is the existence of components with long 
decay times in the atom position fluctuation time correlation functions. That such 
collective components are present is consistent with the large amplitude of the atomic 
position fluctuations in the closely packed structure of the protein; large-amplitude 
displacements must involve the collective motion of an atom and its neighbours. A 
number of recent studies have focused on these collective motions. 

In one study, the atomic displacements in a dynamical simulation of cytochrome c 
were decomposed into two parts (Morgan et a1 1983). The first part is the displacement 
of an atom relative to  the centroid of the amino-acid residue to which it belongs, and 
the second part is the displacement of the residue centroid itself. The former component 
largely reflects localised motions while the latter component is a probe of the collective 
motion. This study showed that the local components dominate the magnitude and 
directionality of the net atomic displacements during time intervals less than 1 ps. 
Over longer time intervals, the collective component tends to dominate the atomic 
displacements. These results are illustrated in figure 3. The relative contributions of 
the local and collective motions vary throughout the protein; the collective contribu- 
tions are most predominant for larger, rigid groups and for the polypeptide backbone. 
The spatial extent of the collective motions in cytochrome c has been probed by 
calculating the displacement correlations of the residue centroids (Ransom- Wright and 
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Figure 4. Map showing the extensive residue displacement correlations in a 32 ps dynamical simulation of 
cytochrome c (Ransom-Wright and McCammon 1984). The correlation of residues i and j is computed as 
the normalised quantity C, = (R,R,)/(R~)”*(R~)”*, where R, is the instantaneous displacement of the 
centroid of residue i from the mean position of the centroid. The values of C, range from 0.6-1.0. A 
single contour is drawn at the value 0.87; larger correlations occur along the diagonal and within the small 
closed regions of f  the diagonal. 
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McCammon 1984). The results, displayed in figure 4, show that many residues have 
large cross-correlations. Some of these correlations are easily understood. For 
example, the correlated motion of residues 92-103 seems to be associated with the 
C-terminal alpha helix, and the correlation of these residues with residues 1-10 reflects 
the contact between the C-terminal and N-terminal helices in the native structure of 
the protein. Other correlations that involve spatially distant residues may be best 
rationalised in terms of large-scale normal modes of oscillation (see below). 

In another study, based on a molecular dynamics simulation of BPTI, it was shown 
that distinct regions of the protein could be identified within which groups of atoms 

. -  
'.'. k 
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Figure 5. Stereoviews of the directions of atomic displacement in two low-frequency 'vibrational modes of 
the pancreatic trypsin inhibitor, as determined by a normal-mode calculation (GO et al 1983). Results are 
given for modes at frequencies ( a )  v=3.56X 10'2s-1, ( b )  v=2.07X 10" s-', 
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displayed very similar displacement time correlation functions (Swaminathan et a1 
1982). This result suggests that collective motion dominates the displacements within 
each such region. These regions include atoms from as many as seven or more residues. 
The importance of collective motions in BPTI has also been demonstrated by normal- 
mode calculations on the protein (G6 et al 1983). In this study, it was shown that 
most of the low-frequency modes involve concerted displacement of many atoms. For 
modes with frequencies in the range Y = 3.6 X 10" s-l to 6 X lo1* s-', the motions 
typically involve several neighbouring residues in the three-dimensional structure. For 
modes with frequencies below 3.6 X ~ O " S - ~ ,  the motions are more global in character. 
The patterns of collective displacement in two of these low-frequency modes are 
illustrated in figure 5.  The low-frequency motions make the dominant contribution 
to the net atomic displacements. This dominant role of slow, collective motions is 
consistent with the results obtained from molecular dynamics studies of proteins 
(Morgan et a1 1983, Swaminathan et a1 1982) and isolated alpha helices (Levy et a1 
1982b). Although the normal-mode approach provides a useful characterisation of 
some important collective motions, it is limited by the harmonic approximation. 
Molecular dynamics simulations show that collective motions with anharmonic character 
do occur in proteins. An important example is the concerted shifting of nearby groups 
of atoms from one local minimum to another (Mao et a6 1982a). 

4.4.  Langevin equations 

As mentioned in 9 3, a useful first step in the quantitative analysis of motions in proteins 
is the application of phenomenological models. An analysis of this kind has been 
carried out for the torsional librations of buried tyrosine residues observed in a 
molecular dynamics simulation of BPTI (McCammon et al 1979). The librations 
examined are those about the axis passing through the gamma and zeta carbon atoms 
of each ring (cf figure 1).  The motion is analogous to rotation of a benzene molecule 
about an axis passing through two atoms at opposite vertices of the ring. Within the 
protein, the amplitude of libration is limited by steric hindrance between atoms in the 

Figure 6. The normalised time correlation functions, C,(t) =(Ap( t )Ap(O) ) / (A (p (O)A9(0 ) ) ,  for torsional 
fluctuations A 9  of the tyrosine-21 ring in a moleculhr dynamics simulation of the pancreatic trypsin inhibitor 
(McCammon er a1 1979). 
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ring and those in the cage surrounding the ring. A typical amplitude observed at 300 K 
is 12". The time correlation functions for the torsional fluctuations decay to small 
values in a short time (approximately 0.2 ps); subsequent decay occurs on a time scale 
of several picoseconds. This result, illustrated in figure 6 ,  indicates that the torsional 
motion is predominantly local in character, with the ring rattling in its cage. On the 
longer time scale, collective distortions of the protein produce small changes in the 
overall shape of the cage with a concomitant alteration of the ring orientation. From 
the distribution of observed torsional librations p (  q) ,  one can calculate the potential 
of mean torque W ( q )  for the ring librations: 

Wcp) =-k,Tlnp(cp). (4.2) 
The potential W(cp) is roughly quadratic, which suggests that the ring libration 
can be analysed in terms of the Langevin equation for a harmonic oscillator. This 
equation is 

14 = -kp - - f$  + N (  t )  (4.3) 
where cp(t)  is the torsional displacement, I is the moment of inertia of the ring about 
the torsional axis, f is a friction constant, k is a harmonic restoring force constant 
obtained from the potential of mean torque, and N (  t )  represents the random torques 
acting on the ring due to fluctuations in its environment. The Langevin equation is 
appropriate if N (  t )  varies more rapidly than cp ( t ) ;  in this limit, N (  t )  may be regarded 
as a Gaussian random process and it is not necessary to specify the mechanism by 
which the torque fluctuations arise. This condition is approximately satisfied for the 
tyrosine rings; the duration of a typical collision between the ring atoms and the 

-120 1 -60 
Figure 7. Torques exerted on the tyrosine-35 ring due to van der Waals interactions with the surrounding 
atoms in a molecular dynamics simulation of the pancreatic trypsin inhibitor (McCammon and Karplus 
1980b). 
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surrounding cage atoms is 0. Ips, which is shorter than the ring libration correlation 
time (cf figure 7). The moment of inertia is readily calculated from the,known atomic 
masses and geometry of the ring, and the force constant k is known from the shape 
of the potential of mean torque. The friction constant f can be calculated from the 
decay time T of the torsional fluctuation correlation function by the relation T = f/ k. 
The numerical values of these three coefficients indicate that the rotational motion of 
the ring within its cage is nearly critically damped; this is consistent with the shape of 
the time correlation function in figure 6. The friction constant may be related to an 
angular diffusion constant by use of the Einstein formula D = k B T / f .  The calculated 
value, D = 2 X 10l1 s-l, is of the same order of magnitude as the experimental diffusion 
constants for the corresponding rotational motions of small aromatic molecules in 
organic solvents (e.g. D = 7.9 X 10" s-l for benzene in isopentane). Physically, this 
result makes sense because the protein rings examined are located in hydrophobic 
clusters within the protein. That the rotational diffusion constant in the protein is 
somewhat larger than that in a typical organic solvent is apparently due to the covalent 
connectivity of the surrounding cage atoms within the protein; there are fewer matrix 
atoms in positions that allow for effective perturbation of the ring angular velocity 
than would be found in typical solvent surroundings. Similar effects have been observed 
in spectroscopic studies of small molecules in large-molecule solvents (Moog eta1 1982). 

The above analysis is restricted to motion on a time scale of a few tenths of a 
picosecond. It is only for these short intervals that the calculated time correlation 
functions are accurate according to strict criteria (Zwanzig and Ailawadi 1969). An 
attempt has been made, however, to extend the above analysis to longer times by 
examination of atomic displacement time correlation functions over periods of up to 
10 ps (Swaminathan et a1 1982). A number of interesting qualitative conclusions 
emerged from this work. Dynamical simulations of BPTI in the presence and absence 
of a simple model solvent environment were found to yield similar RMS atomic 
displacements. Time correlation functions for the atomic displacements decay some- 
what more slowly in the presence of solvent, particularly for atoms near the surface 
of the protein. In the vacuum calculation, the range of correlation times was 0.2-5 ps 
whereas the solvent calculation results ranged from 0.4-lops. For the protein in 
solvent, the correlation times for atoms in the exterior tend to be substantially larger 
than those for atoms in the interior of the protein. Effective friction constants for the 
atoms were estimated using a simple harmonic oscillator Langevin equation approach. 
From these friction constants, it was estimated that the collective motions that dominate 
the atomic displacements over long times typically involve structural units containing 
of the order of 100 heavy atoms. 

4.5. Detailed microscopic models 

Applications of the Langevin equation allow one to identify some of the important 
contributions to the dynamics of particular motions in protein molecules. In principle, 
a more detailed decomposition of the dynamics is possible by microscopic models of 
the type employed in kinetic theory. Such a microscopic analysis has been attempted 
for the sub-picosecond ring librations that were described in the previous subsection 
(McCammon et a1 1979). Because the ring environment bears some resemblance to 
an organic solvent, the microscopic model employed is of the Enskog type that has 
been used successfully in the study of simple liquids (Hynes 1977). In this model, the 
reorientation of a molecule in a liquid is assumed to occur as a result of successive 
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binary collisions between the repulsive van der Waals cores of neighbouring molecules. 
The successive collisions are assumed to be uncorrelated and of instantaneous duration 
and to randomise the angular velocity of the reorienting molecule; this molecule moves 
freely between collisions. For the tyrosine ring in the protein, the model was modified 
to take into account the fact that, between collisions, the ring moves in a harmonic 
manner due to the torsional restoring force. In the absence of collisions, the ring 
reorientation is described by a simple harmonic oscillator equation of motion 

I i = - k p  (4.4) 
where we have assumed that (9) = 0. The unperturbed oscillator exhibits undamped 
librations at a frequency wo = ( k /  The time correlation function for the torsional 
angle is simply 

CO, ( t )  = COS mot. (4.5) 
If the oscillator is subject to instantaneous, uncorrelated collisions, and if each 

collision randomises the angular momentum of the oscillator, then the displacement 
time correlation function of the perturbed oscillator is 

C,( t )  = exp (- vt/2)[cos at + ( v/2a)  sin at] (4.6) 
where Y is the reciprocal of the mean time between collisions and a 2  = 00’ - ( v2/4). 
With reasonable parameters, this model successfully reproduces the simulation 
time correlation function for periods of several tenths of a picosecond. The simple 
microscopic model is, however, inadequate in several respects. As can be seen from 
figure 7, most of the collisional torques are not sufficiently strong to randomise the 
angular velocity of the ring. Also, several impulses in rapid succession are sometimes 
observed for particular ring-atom, matrix-atom pairs (most commonly when the matrix 
atom is part of the local backbone). It would be desirable to incorporate these features 
into a more satisfactory microscopic model. 

4.6. Nature of fast motions 

The forces that act to stabilise the native folding patterns of globular proteins are 
sufficiently weak that the tertiary structures of these molecules are only marginally 
stable under optimal conditions. Consequently, sizable structural fluctuations occur 
in proteins, especially near the protein surface where steric constraints are somewhat 
relaxed. The small amplitude displacements of the atoms (S0.02 nm) observed during 
short periods of time ( ~ 0 . 2  ps) are similar to those observed in liquids. The motion 
of a typical group is chaotic, reflecting the nearly impulsive collisions between the 
group and the atoms that encage it. The largest displacements are in the directions 
corresponding to local dihedral angle fluctuations. Larger displacements of the atoms 
(SO.l  nm) observed during longer periods of time ( a 1 0  ps) are more similar to those 
observed in solid materials at temperatures approaching their melting points. The 
motion of a typical group is subject to significant restoring forces but is damped by 
collisional effects. The magnitudes and directions of displacement are dominated by 
collective motions of clusters of amino-acid residues. The solid-like behaviour is 
manifest most strongly in the protein interior, where the steric constraints are strongest. 
This qualitative picture of a protein having hybrid solid/liquid character, with the solid 
character most pronounced in the interior, is consistent with a simple theoretical model 
of protein structure developed some time ago by Lifshitz (1969). 
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The large contribution of collective motions to the net atomic displacements suggests 
that such motions are of importance in protein function. This supposition is 
strengthened by studies of activated processes in which collective motions have been 
found to play an essential role, as will. be discussed in subsequent sections. Although 
more work is needed to adequately characterise such motions, some important results 
are available. Many collective motions in a protein relax in times of the order of 10 ps. 
This implies that dynamic coupling between solvent and the protein interior, or between 
different regions within a protein, will be cut off at frequencies above about 10l1 s-'. 
Because the chemical bonding interactions that stabilise the structure of individual 
groups within a protein are much stronger than the non-bonded interactions that 
stabilise the tertiary structure, the collective motions consist of anharmonic displace- 
ments of groups whose internal motions are harmonic. In some cases, however, 
collective motions may have 'quasiharmonic' character. That is, the potential of mean 
force for collective coordinates (averaged over the faster localised motions) may be 
approximately quadratic even though the motion extends to non-quadratic regions of 
the underlying potential energy surface. Thus, it may be possible to analyse such 
motions in terms of normal modes on a (temperature-dependent) effective potential 
surface (Levy et a1 1983). 

5. Slow, localised motions 

5.1. Methods 

Displacements of local groups of atoms that have long characteristic times often 
represent activated processes. In such processes, the system must surmount a rate- 
limiting energy barrier that separates certain initial and final configurations. Such 
processes are of great importance in biology. Examples range from local conforma- 
tional changes associated with the binding of ligands (Debrunner and Frauenfelder 
1982) to the rearrangement of covalent bonds that occurs in enzymatic reactions 
(Schulz and Schirmer 1979, Cantor and Schimmel 1980). 

To determine the dynamical details of activated processes, it is desirable to carry 
out simulations of the atomic motions involved. However, the conventional molecular 
dynamics technique is not sufficient for such simulations. The difficulty arises from 
the infrequent occurrence of the transitions. Although the barrier crossing process 
itself is often intrinsically rapid (an individual transition may require less than one 
picosecond), the time required for random fluctuations within the system to produce 
the local atomic momenta required for the subsequent barrier crossing may be of the 
order of milliseconds or longer. Accordingly, the process will not be observed in a 
simulation of a few hundred picoseconds duration. 

Recently, a modified molecular dynamics method has been developed for simulation 
studies of such processes (McCammon and Karplus 1979, 1980b, Northrup et a1 
1982a). In this method, the calculation is divided into two parts. In the first part, one 
calculates the probability of finding the system in a region near the top of the energy 
barrier. In the second part, trajectory calculations are initiated from the region of the 
barrier top, thereby avoiding the long activation step. The approach is most easily 
understood in terms of the following expression for the rate constant (Northrup et al 
1982a): 

(5.1) 
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Here, K is a 'transmission coefficient' (see below), 6 is a 'reaction coordinate' that 
measures the progress of a transition, 4 is the time derivative of 6, 6' designates the 
value of 6 at the peak of the barrier and p ( 6 )  d6 is the probability of finding the system 
in the interval 6 to 6 + d6. Except for K ,  all of the factors that appear in this expression 
are time-average or equilibrium quantities. The transmission coefficient K depends on 
the detailed dynamics of the trajectories passing through the barrier region. The first 
step of the modified technique consists of defining a suitable reaction coordinate for 
the process and calculation of ~ ( 6 ) ;  this provides a value for the factor in square 
brackets in equation (5.1). The reaction coordinate is a function of the system 
coordinates and has the following ideal properties: (a) the reaction coordinate varies 
monotonically as the system moves from the initial-state region over the energy barrier 
and into the final-state region, and ( b )  all configurations with 6 < (>) the barrier top 
value 6' experience a mean force averaged with respect to coordinates other than 6 
in the direction of the initial-(final-)state region. From property ( b ) ,  it is desirable 
that 6 include terms corresponding to all interactions that make sizeable and systematic 
contributions to the barrier. Given the reaction coordinate, the calculation of p (  6 )  
can be carried out by an umbrella sampling procedure (Northrup et a1 1982a). In this 
procedure, one carries out a sequence of simulations in which the system is constrained 
to remain within small intervals of 6, but with unrestricted sampling of all other 
coordinates. By piecing together data from overlapping 'windows' of 6, p ( 6 )  can be 
constructed over a range extending from the reactant region through the barrier region. 
In the second part of the calculation, a large number of independent trajectories are 
calculated by the molecular dynamics technique, starting frorn a representative set of 
configurations with 6 = 6'. The trajectory data are used to calculate (l j l) and to evaluate 
K according to the following equation (Chandler 1978): 

K ( t )  = " m ( 0 ) -  6'lH,[6(t)l). (5 .2 )  

Here, D is a normalisation constant chosen such that K ( O + )  = 1,  6 is the Dirac delta 
function and Hp is a step function which is equal to 1 or 0 for 6 greater than or less 
than t', respectively. Thus, K ( t )  is a time correlation function that measures the net 
flux into the final-state region for trajectories that start at the barrier top. This reactive 
flux time correlation function decays rapidly (within a picosecond) to a plateau value 
that is used in equation (5.1). 

5.2. Rotational isomerisation 

The method outlined in the prevous subsection has been applied in a detailed study 
of rotational isomerisation of tyrosine sidechains in the interior of the protein BPTI 

(Northrup et a1 2982a, McCammon et al 1983). In this process, the tyrosine ring 
rotates such that Ax2 = 180" (cf figure 1). The energy barrier to this rotation arises 
from non-bonded repulsions between atoms in the ring and in the surrounding protein 
matrix. An early analysis, using energy minimisation methods, showed that the very 
large barriers encountered in a hypothetical rigid protein are reduced to 40 to 
100 kJ mol-' when deformations of the matrix are allowed (Gelin and Karplus 1975). 
Although this is a comparatively simple activated process, the full dynamical analysis 
has provided a number of important general results (Northriip et al1982a, McCammon 
et al 1983). A significant initial finding was that the dihedral angle ,y2 is not by itself 
a good reaction coordinate. Examination of structurai models showed that, during 
rotation of the tyrosine-35 ring, certain ring atoms come into close contact with atoms 
of the adjacent polypeptide backbone, particularly with NS6. Thus, a new reaction 
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Figure 8. Adiabatic potential surface for rotational isomerisation of the tyrosine-35 ring in the pancreatic 
trypsin inhibitor (McCammon et a! 1983). The contours are in units of kcalmol-' (1 kcal=4.184 kJ). 
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Figure 9. The potential of mean force W(5)  (--) and mean potential energy ( V ( l ) )  (---) as functions 
of the tyrosine-35 ring rotational isomerisation reaction coordinate 6 (Northrup et a1 1982a). The energies 
are given in units of kcal mol-' (1 kcal = 4.184 kJ). 
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coordinate was constructed as 6 = x 2 - x u ;  xu is an angle that measures how far N36 is 
from the plane of the ring. Energy minimisation of the system was carried out for 
fixed values of x 2  and xu. The resulting ‘adiabatic map’ provides a qualitative indication 
of the effective potential surface for the motion of these two degrees of freedom. From 
the shape of this potential surface (figure 8) the reaction coordinate is seen to provide 
a good description of the most likely path of motion from the initial state to the final 
state of the system. The umbrella sampling calculations carried out using this reaction 
coordinate yield the results shown in figure 9. The potential of mean force W(5)  is 
related to the probability p ( 5 )  by the equation 

W 5 )  = -k*T In d 6 ) .  (5.3) 
Here, W describes the work function or Helmholtz free energy variation of the system 
as a function of the reaction coordinate. The second curve in the picture describes 
the variation of the average potential energy of the system as a function of the reaction 
coordinate. From the relation A W = AE - TAS, and the fact that AE = A( V) when T 
is constant, it is seen that the intrinsic entropy variation during the rotation is small. 
The barrier in the potential of mean force is somewhat smaller than what one would 
expect based on NMR lineshape analysis of the ring rotation; the latter yields an 
experimental barrier that is about 30% larger than the theoretical result (Wagner et 
al 1976). This quantitative discrepancy appears to be associated with the omission of 
solvent water from the initial calculations (Northrup et a1 1982a). In the absence of 
hydrogen bonding and other interactions with the solvent, the surface of the protein 
(which includes part of the ring environment) changes somewhat from the expected 
solution structure; the slight distortions that result in the protein matrix are sufficient 
to account for the discrepancy. 

The calculation of trajectories starting from the barrier region showed that a 
substantial fraction of these did not cross the barrier in the smooth, uninterrupted 
manner assumed in the ‘ideal transition-state’ model (see below). Frictional effects, 
particularly collisions between the ring and the local backbone, were found to interrupt 

Time [ p s )  

Figure 10. The normalised reactive flux time correlation function K ( t )  for the tyrosine-35 ring rotational 
isomerisation (Northrup et a1 1982a). 
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a significant number of the crossing attempts. The transmission coefficient K for the 
process was found to be about 0.2 (figure 10). Detailed analysis of the individual 
trajectories has helped considerably to clarify the mechanism for this isomerisation 
process (McCammon et a1 1983). The ring rotation was found to be preceded by 
important structural fluctuations in the matrix around the ring. Particularly significant 
is a spontaneous displacement of a section of backbone that lies above one face of the 
ring. This displacement systematically precedes the ring rotation and appears to make 
two important contributions. The first effect of the backbone fluctuation is to displace 
atoms slightly from the path of the ring, resulting in a substantial reduction of the 
barrier to be crossed. Thus, the ring rotation appears to be gated by a collective 
motion in the surrounding matrix. During the rotation, bond angle deformations occur 
within the sidechain and adjacent backbone; the effect of these is to increase the 
distance of closest approach between the ring and N36, resulting in a further reduction 
of the effective energy barrier. The second effect of the backbone fluctuation is to 
create a transient packing defect that helps to initiate the transition. The defect takes 
the form of a small volume (approximately 10 A3) into which the ring can rotate in 
response to collisions with the remaining matrix atoms. The resulting collisional bias 
allows the ring to accumulate the rotational kinetic energy necessary to surmount the 
residual barrier and is reminiscent of the mechanism of displacement of atoms in simple 
liquids (Rahman 1966). The coupling of the collective fluctuation in the protein matrix 
and the local isomerisation reaction is apparent in a sequence of structural ‘snapshots’, 
figure 11. 

5.3. Nature of local activated processes 

Studies of fast motions in proteins have shown that the atomic displacements resemble 
those observed in the liquid and solid states, as has been discussed in 0 4. It is therefore 
useful to consider the general characteristics of local activated processes in liquids and 
solids as a reference point for the corresponding processes in proteins. Activated 
processes in condensed phases can be analysed in terms of equations (5.1) and (5.2). 
Processes for which the transmission coefficient K = 1 correspond to an ‘ideal transition- 
state theory’ limit. This theory assumes that the frictional effects (e.g. collision frequen- 
cies) within a system are large enough to ensure that an equilibrium population of 
activated initial states is maintained in an ensemble of reacting systems and that systems 
that have crossed the energy barrier are quenched in the final-state region before they 
can rebound back across the barrier. It is also assumed that the frictional effects are 
small enough that systems crossing the barrier region in the direction of the final state 
are not interrupted and deflected back toward the initial state. These assumptions can 
not be perfectly realised in any real system, so that K is always less than 1. Much 
work in chemical physics has been devoted to clarifying the nature of departures from 
the ideal transition-state theory (Kramers 1940, Chandler 1978, Skinner and Wolynes 
1978, Northrup and Hynes 1980, Grote and Hynes 1980, Garrity and Skinner 1983). 

In a liquid, the collision frequencies are sufficiently large that the rates of some 
processes may be reduced substantially by interruption of system trajectories in the 
barrier region. Such effects are most pronounced for the motion of large groups (which 
have large collision cross sections or friction coefficients) over broad energy barriers. 
For a highly damped, one-dimensional process in which the effective potential surface 
is parabolic in the initial, barrier and final-state regions, the rate constant can be 
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Figure 11. Stereoviews of atoms in the vicinity of tyrosine-35 at a sequence of times during the rotational 
isomerisation (McCammon et al 1983). From top to bottom in each panel, the times in picoseconds are 
( a )  0.50, 0.75, 1.00, (b j  1.25, 1.38, 1.50, (c) 1.62, 1.75, 2.00. The 'gate', which includes the backbone of 
residue 37, opens about 0.5 ps before the tyrosine-35 ring begins to rotate. 
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expressed as (Kramers 1940, Chandrasekhar 1943) 

k = ~ ( W i / 2 ~ )  exp(-AW/k,T) 

K = wbm/f. (5.4(b)) 
Here, wi and are the angular frequencies of oscillation associated with the initial 
well and inverted barrier, respectively, A W is the height of the potential of mean force 
barrier on the reaction coordinate, kB is Boltzmann’s constant, T is absolute tem- 
perature, m is the mass of the particle moving along the reaction coordinate, f is the 
friction coefficient of the particle and K is a transmission coefficient which would be 
equal to one in the simple transition-state theory. The high damping limit is obtained, 
for example, for certain conformational changes of flexible molecules in solution; the 
rate constant is reduced from the transition-state value because such molecules cross 
the energy barriers in an erratic, Brownian manner (Levy et a1 1979). The simple 
transition-state picture may also break down for processes that involve relative motion 
of charged groups in polar solvents (van der Zwan and Hynes 1982, Warshel 1982, 
Calef and Wolynes 1983). Here, the relative motion of the charges will be strongly 
influenced by fluctuations in the polarisation of the solvent. If one defines a primitive 
reaction coordinate in terms of the charge separation, the polarisation fluctuations will 
again lead to an erratic, Brownian motion along this coordinate. In extreme cases, 
the rate of the process will be controlled by the collective motions of the solvent dipoles. 

In solids, one again observes certain significant departures from simple transition- 
state theory due to the nature of the underlying atomic motion. Consider, for example, 
vacancy diffusion in a simple monatomic crystal (Bennett 1975, Becker and Hoheisel 
1982). Typically, an atom must squeeze between several nearest neighbours to move 
into the vacancy site. The necessary displacement of the neighbours occurs first and 
engenders strain in the lattice that provides the dominant contribution to the activation 
energy. The mobile atom then passes between its neighbours, experiencing much 
smaller non-bonded repulsions than would occur in the undistorted lattice. Detailed 
studies show that a significant number of barrier recrossings occur; the mobile 
atom retains enough kinetic energy to return to its initial site before the permissive 
configuration of the neighbouring atoms collapses. 

Activated processes in proteins can be expected to display many of the properties 
observed in liquids and solids as well as additional properties that result from the 
unique structural features of these molecules. Processes that involve small displace- 
ments of non-polar groups are likely to be subject to relatively small frictional forces. 
The rotational isomerisation of a methyl group, for example, can be expected to have 
a nearly ideal transition-state character although some recrossing of the barrier may 
occur. Processes that involve large displacements of non-polar groups will generally 
be more complicated in several respects. First, the group will be subject to direct 
frictional effects that will act to reduce the rate constant. Second, the motion is likely 
to involve systematic coupling to collective distortions in the surrounding protein 
matrix. The covalent connectivity of the matrix atoms can be expected to result in 
more extensive collective distortions than would be seen in, for example, a correspond- 
ing small-molecule crystal. This property is apparent in the tyrosine ring isomerisation 
study described in 0 5.2;  in this process, the displacement of a sizeable region of 
polypeptide backbone is coupled to the local rotation. The extensive character of the 
collective component leads to a significant time lag between the backbone and ring 
motions; the collective displacement ‘gates’ the ring rotation. Such effects complicate 
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the interpretation of the activation energies and other experimental parameters because 
the collective motion is likely to make an important contribution. To analyse such 
processes, it may be essential to consider their intrinsic multidimensional character 
(Northrup and McCammon 1984) (figure 12). Because of the relatively weak interac- 
tions between discrete structural domains in many proteins, seemingly localised acti- 
vated processes may, in some cases, be coupled to global motions of proteins, e.g. the 
transitions of groups located at the interface of two domains may be coupled to the 
relative motion of those domains. An extreme example is the coupling of ligand 
molecule displacements in hinge-bending proteins (cf P 6). In cases where the collective 
motion involves the protein surface, the rate of the local activated process is expected 
generally to display a dependence on solvent viscosity and other environmental factors 
that affect displacements of the surface (McCammon el a1 1976, Beece et a1 1980). 

Activated processes that involve displacements of charged groups can be expected 
to display all of the above features plus a dependence on polarisation fluctuations 
within the protein and the solvent. As with reactions that involve charge reorganisation 
in polar solvents, such reactions may be limited by the frequency of occurrence of 
permissive environmental polarisations; this represents another example of collective 
‘gating’ of local reactions. 

X- 

Figure 12. Schematic representation of the potential surface corresponding to a simple ‘gated’ reaction 
(Northrup and McCammon 1984). The spatial coordinates used to describe the reaction are a ‘primitive’ 
coordinate X and a ‘gate’ coordinate q. The local minima at A and B correspond to stable states within 
the ‘gate-closed’ conformation; A‘ and B’ are corresponding states within the ‘gate-open’ conformation. 
M is a local maximum and S is a saddle point. Transitions from A to B will typically proceed through the 
intermediate states A’ and B’ rather than proceeding directly through the higher energy region around S. 
In many cases, motion along the primitive coordinate corresponds to local motion (e.g. ring rotation) while 
that along the gate coordinate corresponds to collective motion (e.g. displacement of a section of the protein 
adjacent to the ring). The overall rate of the A to B transition will therefore often reflect global influences 
(e.g. solvent viscosity, alterations of the protein rigidity that result from binding of effector molecules, etc). 

6. Slow, extensive motions 

6.1. Methods 

Large-scale motions in proteins are generally slow and must be studied by techniques 
other than conventional molecular dynamics simulations. The fastest such motions 
are small-amplitude vibrations involving all or much of the molecule (de Gennes and 
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Papoular 1969, Suezaki and Gb 1975, McCammon et a f  1976). Due to the large 
effective masses and solvent damping involved, these motions have characteristic times 
that often exceed lops .  Larger amplitude motions (e.g. the local denaturation of 
chain segments near the protein surface) may involve the diffusional exploration of a 
large number of low-energy conformations; such motions often have characteristic 
times in the microsecond to second range (Creighton 1978). 

The type of method used to study slow, extensive motions depends on the complexity 
of the motion of interest. For low-frequency vibrations with amplitudes 60 .1  nm, 
normal-mode calculations can be used to identify some of the important features (Levy 
et a1 1982b, Gb et a1 1983). Quantitative difficulties arise, however, due to the 
importance of anharmonic effects (cf 0 4.2). These difficulties can be circumvented by 
use of a quasiharmonic approach in which one considers slow oscillations near the 
minima of a potential surface that has been averaged with respect to the fast motions 
in the system. There are several different ways to do this. One can take the familiar 
approach of continuum mechanics, in which the system is characterised by suitable 
elastic constants (Young’s modulus, Poisson’s ratio) and damping parameters. The 
elastic constants describe the strain in the material in response to a slowly varying 
applied stress and therefore implicitly include the averaging with respect to fast motions. 
This approach has been used to characterise some of the low-frequency oscillations 
of spherical proteins, for example (de Gennes and Papoular 1969, Suezaki and G 6  
1975). A second approach is to monitor the large-scale displacements that occur in 
a full molecular dynamics simulation, and to use this information to construct a potential 
of mean force for appropriate collective coordinates in the protein (Levy et a f  1983). 
The resulting temperature-dependent potential typically has a quadratic minimum in 
the region of the native structure and can be used as a basis for ‘effective’ normal-mode 
calculations. 

In cases where it is possible to focus on a specific mode or displacement path, but 
where the motions may be of large amplitude, there are again two useful methods. 
The first is the adiabatic mapping technique in which one displaces the system along 
the path of interest while minimising the energy of other degrees of freedom 
(McCammon et a1 1976, Mao et a1 1982b). The resulting potential may provide an 
approximation to the potential of mean force for displacements along the path. This 
approach has been used to study both large- and small-amplitude ‘hinge-bending’ 
motions; these motions involve the relative displacement of globular regions that are 
linked by flexible stctions of a protein. Given the effective potential surface, the 
dynamics of the motion in the presence of solvent surroundings can be modelled by 
use of the Langevin equation (McCammon et a1 1976, McCammon and Wolynes 
1977). A second possible approach, which has not been applied to date, would be to 
calculate the potential of mean force more rigorously by using the type of approach 
described in connection with the sidechain isomerisation motions (cf D 5). 

For large-amplitude motions where one is not able to specify the path in advance, 
it may be useful to apply Brownian dynamics simulation methods (Ermak and 
McCammon 1978). Brownian dynamics is the diffusional analogue of molecular 
dynamics and is an appropriate technique for the highly damped situations that are 
ordinarily encountered. Here, one initially simplifies the potential function by averaging 
over the rapid motions in the system and over displacements of solvent molecules and 
other groups whose detailed motions are not of interest. The degrees of freedom that 
have been averaged over are not explicitly represented in the final simulation model; 
rather, they are included in a ‘thermal bath’. The simulation is then carried out by a 
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numerical integration of the Langevin equation; the bath is represented not only by 
the modified potential but also by suitable frictional and random forces. For extensive, 
activated processes where the motion involves barrier crossing, special methods 
analogous to those described in 0 5.1 for inertial systems are useful (Northrup and 
McCammon 1980). 

6.2. Hinge-bending motions 

Many enzymes and ligand-binding proteins have two or more globular domains con- 
nected by relatively flexible strands of polypeptide (Ptitsyn 1978, Richardson 1981). 
The binding sites for substrate or ligand are typically located in a cleft between two 
such domains, so that the relative motion of the domains is likely to play an important 
role in binding and subsequent activity. Similar ‘hinge-bending’ motions may be 
important in the function of antibodies and certain muscle proteins. 

The first protein for which a dynamical analysis of hinge-bending motions was 
attempted is lysozyme, a small enzyme with two globular domains separated by an 
active site cleft (McCammon et a1 1976). An approximate potential for the hinge- 
bending was calculated by the following procedure. A bending axis was first identified 
by examination of the crystal structure of the protein. One lobe of the protein was 
then rigidly rotated through various angles about this axis. After each rotation, the 
outer parts of the two lobes were held fixed and the remainder of the protein was 
relaxed by use of an energy minimisation procedure. ‘This relaxation process relieved 
local strains (e.g. close contacts between non-bonded atoms, bond-angle deformations). 
Because the characteristic time scale for these local motions (less than 0.1 ps) is much 
shorter than the time scale for the hinge-bending motion itself (greater than 10 ps, 
see below), the resulting adiabatic potential is a reasonable approximation to the 
effective potential for the hinge-bending. The effective potential is approximately 
quadratic in shape. An analysis of the calculated stress-strain ratio in terms of the 
equations for the deformation of a thick, linear beam shows that the Young’s moduli 
are of the order of lo-” dyn cm-’, in the range expected for proteins, and that bending 
dominates shear by about an order of magnitude in determining the stiffness of the 
protein. The calculated force constant is such that fluctuations of the cleft width of 
the order of 0.1 nm are expected at room temperature. 

Because the hinge-bending motion of lysozyme involves a substantial movement 
of the protein surface, it is essential to consider the solvent in a description of the 
hinge-bending dynamics (McCammon et a1 1976, McCammon and Wolynes 1977). 
This was done within the framework of the harmonic oscillator Langevin equation by 
calculating the effective moment of inertia for the protein bending and the friction 
constant associated with solvent damping. The damping was treated by modelling the 
two globular domains as spheres and calculating the viscous frictional drag opposing 
the relative motion of these spheres by use of a modified Stokes law. The relative 
motion of the two globular domains in lysozyme was found to be overdamped, with 
a characteristic relaxation time of 20 ps. Thus, the hinge-bending motion is expected 
to be Brownian in character. A typical fluctuation will open or close the cleft by about 
0.1 nm and will persist for approximately 20 ps. 

Recent studies suggest that much larger hinge-bending motions occur in other 
proteins. For the L-arabinose-binding protein, calculation and experiment both indi- 
cate that the binding cleft, which is open in the unliganded state, is induced to close 
upon ligand binding; the two lobes of the protein swing through a relative angle of 
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approximately 30" upon closing (Mao et a1 1982b). The open and closed structures 
of the protein are illustrated in figure 13. 

Figure 13. Structures of the L-arabinose-binding protein corresponding to hinge-bending angles of 0" ( a )  
and 28" ( b )  (Mao eta[ 1982b). Sidechain atoms are omitted, and the hinge region is indicated by darker lines. 

6.3. Single-strand motions 

Certain large-scale motions in proteins involve structural changes that are less well 
defined than, for example, the hinge-bending motions described in the previous subsec- 
tion. One example is the transient unfolding of a region of polypeptide chain at the 
protein surface. Such local denaturations may allow complete rotations of the backbone 
dihedral angles in the displaced polypeptide strand. Approximate simulations of such 
motions are possible using the Brownian dynamics procedure (Ermak and McCammon 
1978). 

The Brownian dynamics analysis of large-scale motions can be illustrated by recent 
studies of the growth of alpha helices in aqueous solution (McCammon et a1 1980, 
Pear et a1 1981). These calculations made use of a simplified structural model for the 
polypeptide chain. Each residue in the chain was represented by a single interaction 
site and the sites were linked by virtual bonds (Flory 1969). A set of energy parameters 
for the simplified model was developed by recognising that local motions such as 
sidechain rotations are faster than large-scale changes in the chain conformation (Levitt 
1976, McCammon et a1 1980). This separation of time scales was exploited to construct 
an approximate potential of mean force for the virtual bond rotations. The potential 
of mean force includes the average effects of the local motions and solvent interactions. 

The large-scale motions of the polypeptide chain are subject to large frictional 
forces due to the high viscosity of the solvent. Inertial effects are negligible, so that 
the Brownian dynamics simulation approach is appropriate (McCammon et a1 1980). 
To study the dynamics of helix coil transitions in polyvaline, a series of simulations 
was produced, each starting at the all-helix configuration. The diffusional motion of 
residues out of and back into the helical configuration was monitored. A pronounced 
end effect was observed; the rate constants for helix coil transition of the terminal 
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residue were about two orders of magnitude larger than those for residues closer to 
the middle of the chain. A more detailed analysis of the simulations revealed that 
adjacent residues often move from the helix to the coil or vice versa in nearly concerted 
fashion (Pear et a1 1981). Such transitions are not consistent with the conventional 
idea that successive transitions occur independently (Schwarz and Engel 1972). It has 
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Figure 14. Configuration space defined by the virtual dihedral angles for the two residues at the end of an 
a-helical region of polyvaline (Pear et a1 1981). ( a )  The potential of mean force with contour intervals of 
0.4 kcal mol-' (1 kcal= 4.184 kJ). The minima at S,, S2 and S, correspond, respectively, to the most stable 
configurations with all residues in the helix, the end-most residue out of the helix, and the two residues at 
one end out of the helix. Arrows indicate the preferred directions of diffusion (displacements subject to 
the smallest frictional forces in the solvent). ( b )  Diffusional trajectories for two helix-coil transitions. The 
trajectories begin just to the right of region S , .  Neither trajectory follows the commonly assumed sequence 
S' -+ s, -* s,. 
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been shown that the frequent occurrence of the correlated transitions results from the 
relatively small frictional forces associated with these motions (Pear et a1 1980, 1981). 
The trajectories of two such transitions are shown in figure 14. 

6.4. Nature of large-scale motions 

Because large-scale motions typically involve substantial displacements of the protein 
surface, the coupling between the protein and its solvent surroundings is an important 
determinant of the nature of such motions. This coupling will, in general, influence 
both the probabilities of occurrence of different configurations of the protein and the 
rates of transition among these configurations. 

The simplest kinetic effect of the solvent is the slowing of protein motions due to 
viscous damping. For the enzyme lysozyme, the lifetime of an open conformation of 
the active site cleft is increased from about 8 ps for the underdamped motion expected 
in uacuo to about 20 ps for the overdamped motion in water at room temperature 
(McCammon er a1 1976). The hinge-bending motions in antibody molecules involve 
smaller restoring forces and larger frictional forces; the characteristic times for these 
motions are of the order of 10ns  (McCammon and Karplus 1977). In the case of 
motions that have an intrinsically multidimensional nature, the solvent damping effects 
may also change the preferred pathways of displacement from what would be expected 
based on the potential surface alone (Northrup and McCammon 1983). An example 
is the solvent-induced correlation in dihedral angle rotations shown in figure 14. It 
has recently been shown that the preferred path P of displacement for a highly damped 
system is that for which (Berkowitz er a1 1983) 

[p f t r  exp ( p  W) ds  = minimum (6.1) 

where ftt is the tangential component of the friction tensor along the path, p-' = kBT 
is the Boltzmann constant multiplied by temperature and W is the potential of mean 
force. This variational formula explicitly displays the dependence of the pathway of 
conformational change upon both frictional and potential effects. As will be discussed 
in § 8, such effects are expected to influence the mechanistic details of ligand-binding 
and other biological functions of proteins. 

In the analyses of damping effects described above, the solvent has been treated 
as a viscous continuum. This simple model must be replaced by more sophisticated 
descriptions of the solvent in certain cases. For example, the large restoring forces 
involved in the lysozyme hinge-bending result in sufficiently rapid motions that the 
simple viscous response model for the solvent begins to break down (McCammon and 
Wolynes 1977). The solvent can still be modelled as a continuum, but one which has 
an inertial as well as viscous character. Other extensions of the continuum model are 
possible in principle, e.g. incorporating solvent dielectric features as has been done in 
studies of electrolyte solutions (Wolynes 1980). In some cases, it will be essential to 
introduce a detailed molecular model for the solvent. This will be required for protein 
motions that result in significant alterations of the surface exposure. Such motions 
will involve changes in the solvation of the surface groups with concomitant energetic 
and kinetic 'effects. An approximate consideration of such effects upon the hinge- 
bending motions of the L-arabinose-binding protein suggests that solvation changes 
of charged sidechains in the binding site cleft may regulate the overall conformation 
of this protein (Mao er a1 1982b). 
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7. Experimental results 

7.2. X-ray difiaction 

X-ray diffraction studies provide information on the spatial distribution of electronic 
density in protein crystals. The method has been extensively applied to determine the 
average positions of the atoms in protein molecules from the corresponding peaks in 
the electron density. It has long been recognised that the shape of such peaks provides 
information on the distributions of the displacements of the individual atoms in the 
crystal. Recently, diffraction data from a number of proteins have been analysed in 
terms of the thermal motions of their constituent atoms (Frauenfelder et a1 1979, 
Artymiuk et a1 1979, Hartmann et al 1982, Glover et al 1983). 

In the simplest case of isotropic, harmonic displacement, the width of an electron 
density peak is characterised by a single Debye-Waller factor (or ‘temperature’ factor), 
B. This factor is related to the apparent mean square atomic displacement by (Willis 
and Pryor 1975) 

B = (8rZ/3)((Ar)’). (7.1) 

The apparent mean square atomic displacement includes a contribution ( (Ar)2)ld from 
lattice disorder in the crystal and other effects in addition to the contribution ((Ar)*),, 
for thermal motion (conformational and vibrational fluctuations) within a single 
molecule. The two terms may be of comparable magnitude at room temperature, but 
the small apparent variation of the disorder term allows one to estimate ((Ar)z)ld and 
make comparison with dynamical simulation results. In the one case where a detailed 
comparison has been made, the experimental and theoretical results were found to be 
similar (Northrup et a1 1980, 1981), cf figure 15. 

Figure 15. Correlation diagram for the calculated and experimental values of the average RMS atomic 
position fluctuation for each residue in cytochrome c (Northrup et al 1981). The correlation coefficient is 
R = 0.73. 
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Some effort has been made to go beyond the simple assumptions of isotropic and 
harmonic motion in the analysis of experimental results. These include x-ray structure 
refinements with partial or full analysis of the atomic displacement anisotropy 
(Artymiuk et a1 1979, Konnert and Hendrickson 1980, Glover et a1 1983). The results 
obtained to date are consistent with the theoretical finding that the atomic motion is, 
in general, quite anisotropic. Experiment and theory are also in agreement in conclud- 
ing that collective motions within proteins tend to wash out the correlations that might 
be expected between local structure and the preferred direction of atomic displacement. 
Studies of the temperature dependence of the electron density peak widths provide 
valuable information on the character of the effective potentials constraining the atoms 
to their mean positions (Frauenfelder et a1 1979, Hartmann et a1 1982). Such studies 
show that the atomic displacements are generally anharmonic in character. Frauenfel- 
der et a1 (1979) have characterised the effective atomic potentials by simple power 
law expressions. Among other findings, they show that the potentials of mean force 
for atomic displacement near the protein surface often have a square well character, 
in agreement with theoretical findings. 

7.2. Nuclear magnetic resonance 

Nuclear magnetic resonance is particularly valuable as a probe of protein dynamics 
(Campbell et a1 1978, Gurd and Rothgeb 1979, Jardetzky 1981, Nagayama 1981, 
Andrew et a1 1982). The method can be used on the normal solution state of proteins 
and, as a result of recent developments in spectral assignment techniques, can provide 
structural and dynamical information on specific parts of protein molecules. Moreover, 
the method is useful for study of both fast and slow local motions. Fast motions 
modulate the magnetic environment of nuclei at frequencies that stimulate nuclear 
magnetic relaxation. Thus, these fast motions are reflected in NMR relaxation times 
and in the nuclear Overhauser enhancement (NOE) factors that characterise the 
cross-relaxation of specific pairs of nuclei. Studies of 13C nuclei have been particularly 
useful, because the magnetic-field fluctuations are often dominated by the relative 
motion of protons that are bonded to the carbon with a well-characterised geometry. 
NMR studies also provide useful information on the dynamical effects of solvent water 
at the protein surface (Bryant et a1 1982, Andrew et a1 1983). 

In general, the detailed analysis of motion based on NMR data is complicated by 
the need to specify a physical model for the underlying dynamics. In this connection, 
the recent development of a theoretical formalism that allows model-free analysis is 
particularly useful (Lipari and Szabo 1982a, b). Application of this and more detailed 
approaches to 13C NMR relaxation data from the small protein BPTI has shown that 
the motion of a number of groups is generally compatible with what has been found 
in dynamical simulations (Levy et a1 1981, 1982a, Lipari et a1 1982). 

Local motions on long time scales can be probed by use of techniques that are 
sensitive to large displacements or ‘exchange’ of nuclei. The 180” rotations of tyrosine 
rings provide a good example (Campbell et a1 1978). At low temperatures, the rings 
remain for a sufficiently long time in given orientations so that the delta and epsilon 
protons can be individually distinguished because of their different magnetic environ- 
ments. The rings rotate more rapidly as the temperature is increased, producing 
spectral changes that lead eventually to a collapse of some of the lines when rapid 
rotation produces an equivalent average magnetic environment for the corresponding 
protons. Analysis of these spectral changes allows determination of the rate constants, 
activation energies and activation entropies for the ring rotations. 
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7.3. Mossbauer spectroscopy 

There have been a number of attempts in recent years to use Mossbauer spectroscopy 
as a probe of protein dynamics (Knapp et a1 1982, Bauminger et a1 1983). This 
technique provides information on the mean square displacements of certain atomic 
nuclei during intervals corresponding to the lifetime of the nuclear excited state 
produced by gamma-ray absorption. Most investigations have focused on the displace- 
ments of iron atoms in haeme proteins during periods of 10-7-10-9 s. As with x-ray 
diffraction and NMR studies, some difficulty arises in any attempt to specify a unique 
microscopic description of the atomic motion, although temperature-dependent studies 
help to reduce the number of possibilities. The conclusions emerging from these studies 
emphasise the dominant contribution of collective motions within the proteins to the 
iron displacements. For a number of proteins, the apparent displacements decrease 
dramatically below certain critical temperatures (200 K for metmyoglobin and deoxy- 
myoglobin); this has been attributed to a freezing of the water at the protein surface 
and concomitant suppression of the important collective motions. Because the 
Mossbauer technique is not sensitive to low-frequency motions, it has been useful in 
the approximate separation of the static and dynamic contributions to the atomic 
displacements observed in x-ray diffraction studies (Frauenfelder et a1 1979, Hartmann 
et a1 1982). 

7.4. Hydrogen exchange 

Many of the hydrogens bonded to oxygen or nitrogen atoms in a protein will be 
replaced by deuterium if the molecule is suspended in heavy water. Because such 
exchange requires transient breaks in any hydrogen bonds at the exchange site and 
the presence of solvent species at this site, the hydrogen exchange phenomenon 
has long been recognised as an indicator of conformational fluctuations in proteins 
(Englander et a1 1972, Woodward and Hilton 1979). The detailed character of the 
conformational fluctuations has been the subject of some debate, in part due to the 
difficulty of identifying which hydrogens are exchanged in a given period of time. 
Recent applications of proton NMR methods to this problem, together with advances 
in NMR assignment techniques, off er some hope of making hydrogen exchange a more 
detailed tool for probing protein dynamics (Hilton and Woodward 1978, Wuthrich 
and Wagner 1979, Wagner and Wuthrich 1979, 1982). The NMR techniques have 
more recently been complemented by neutron diffraction techniques, which indicate 
the locations of exchanged hydrogens in protein crystals soaked in heavy water 
(Kossiakoff 1982, Wlodawar and Sjolin 1982). Overall, the results of the recent studies 
are consistent in showing that the slowest exchange is associated with backbone 
hydrogens that are buried in the protein interior and centrally located in substantial 
elements of secondary structure. This is consistent with the observation by Levitt 
(1981) that there is some correspondence between the fluctuations in hydrogen bond 
lengths in dynamical simulations and the hydrogen exchange rates. Kossiakoff (1982) 
suggests that the slow exchange of buried hydrogens proceeds by a ‘regional melting’ 
mechanism that involves the local breaking of hydrogen bonds and the formation of 
a solvent-filled cleft to the protein surface. This model is intermediate between the 
traditional ‘penetration’ and ‘local unfolding’ models, which, respectively, suggest less 
and more disruption of the protein matrix. Although the dynamic interpretation of 
the hydrogen exchange results is still somewhat imprecise, an important finding in the 
recent work is that surprisingly rapid exchange is observed from some well-buried 
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atoms with small temperature factors in the x-ray diffraction data. Thus, despite the 
results of Levitt (1981) mentioned above, it is not always possible to extrapolate from 
the relatively rapid, low-energy motions measured by temperature factors (or RMS 

displacements in conventional dynamical simulations) to the slow, high-energy motions 
probed by hydrogen exchange. 

7.5. Other experiments 

It was shown a number of years ago that oxygen molecules can diffuse into the interior 
of proteins freely enough to quench the fluorescence of buried tryptophan sidechains 
on a nanosecond timescale (Lakowicz and Weber 1973). The apparent diffusion 
constant for oxygen in the interior of a protein is nearly as large as that for diffusion 
in bulk water. Many subsequent studies (summarised by Calhoun et a1 (1983b)) have 
examined the quenching of tryptophan fluorescence and phosphorescence by other 
molecules and ions. Calhoun et a1 (1983a, b) have provided results which indicate 
that, while oxygen can move through native proteins fairly freely, ions and polar 
molecules larger than oxygen are strongly excluded from the interior of native proteins 
and depend upon substantial disturbances of the protein structure for tryptophan 
contact and quenching. 

Three new techniques for probing large-scale motions in proteins have recently 
been described. In crystals of proteins that have globular lobes connected by hinges, 
the pattern of crystallisation may be such as to produce mechanical anisotropy. This 
has been demonstrated for triclinic lysozyme crystals, which are relatively easily 
deformed by compressive forces that act in the direction corresponding to hinge- 
bending of the molecules in the crystal (Morozova and Morozov 1982). The apparent 
flexibility of the individual molecules is roughly consistent with a theoretical estimate 
(McCammon et a1 1976). Other evidence of hinge-bending motions has recently been 
obtained in inelastic neutron scattering studies of the enzyme hexokinase (Jacrot et a1 
1982). Finally, evidence that the loops of the activation domain in trypsinogen are 
dynamically disordered has recently been obtained by analysis of the perturbed angular 
correlation of mercury atom labels (Butz et a1 1982). The apparent characteristic 
time for the loop motion is about 11 ns, which is comparable to the time required 
for diffusional reorganisation of other polypeptide chains in simulation studies 
(McCammon et a1 1980). 

7.6. Comment on experiments 

The studies mentioned in this section (and in D 8) represent a small sample from the 
total experimental effort on protein dynamics. More comprehensive reviews of this 
effort have been provided recently (see references in 0 1.3). The purpose of this section 
has been to illustrate the type of information presently available from experiments 
and the degree of overlap with the theoretical work. It is clear that the x-ray diffraction 
and NMR studies provide the most information concerning the structural aspects of 
motions in proteins. Even in these studies, however, theoretical modelling has been 
helpful in the development of detailed structural interpretations. Theory is likely to 
play a larger role in the future with respect to the interpretation of other types of 
experiments. Among the experimental approaches mentioned here, inelastic neutron 
scattering has perhaps the greatest unrealised potential. By appropriate isotopic 
labelling studies, this approach should be able to provide the same type of detailed 
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dynamical information for proteins that it has for other dense materials (Leadbetter 
and Lechner 1979). 

8. Protein dynamics and the kinetics of protein function 

8.1. Ligand binding 

The rate of initial encounter between a ligand and a protein is diffusion-controlled. 
For some proteins, this encounter rate limits the overall rate of protein function. This 
is true, for example, of enzymes that have been ‘perfected’ as catalysts by evolutionary 
selection (Knowles and Albery 1977, Brouwer and Kirsch 1982). The general factors 
that determine the diffusional encounter rate are understood (Calef and Deutch 1983), 
but research continues on the detailed effects of protein-ligand interaction potentials 
(Neumann 1981, Matthew and Richards 1982, Simondsen et a1 1982, Chou and Zhou 
1982, Matthew et a1 1983), the saturation of binding sites at high ligand concentration 
(Berg and Ehrenberg 1983), and other factors. Shoup and Szabo (1982) have analysed 
the partially diff usion-controlled case in which there is a free energy barrier that 
prevents stable binding for some fraction of the protein-ligand encounters; they have 
provided a useful connection between the customary treatment in terms of a partially 
absorbing boundary condition and a more detailed treatment based on the average 
interaction potential between protein and ligand. 

The internal motions of a protein may influence some details of its diffusional 
encounters with ligands (as a result of hydrodynamic coupling through the solvent, 
charge fluctuations, etc) , but more important effects are expected in the subsequent 
binding steps. The structural fluctuations of the protein will generally include variations 
in the available volume of its binding sites, as well as in the disposition of charged, 
hydrogen bonding and other groups that are involved in ligand binding. The probability 
that a properly oriented ligand will actually be bound upon collision with the initial 
binding region at the protein surface will therefore display a time dependence. The 
character of the relevant binding site motions will depend on the particular protein 
and ligand involved. For the initial entry of molecular oxygen into proteins such as 
myoglobin or haemoglobin, relatively localised distortions of the protein matrix may 
be sufficient to open the necessary pathway (Frauenfelder et a1 1979, Case and Karplus 
1979). A number of enzymes have mobile surface loops that must adopt certain 
conformations to allow ligand entry and then other conformations to secure the ligand 
in place. Examples include the ‘flap’ regions at the active sites of penicillopepsin 
(James et a1 1982, James and Sielecki 1983) and triosephosphate isomerase (Banner 
et a1 1975) and the activator-binding loops in trypsin (Bode 1979, Huber and Bennett 
1983). In yet other cases, hinge-bending motions involving the relative displacement 
of large globular regions are required to open binding sites (McCammon et a1 1976, 
Anderson et a1 1979, Newcomer et a1 1981, Huber and Bennett 1983). 

In all of the examples mentioned above, the protein fluctuates among a variety of 
conformations, only some of which allow ligand binding. Thus, the protein acts as a 
kind of gate that regulates access to the binding site. Such gating is often a necessary 
consequence of the functional design of a protein. The protein must be able to open 
the binding site easily to allow ligand entry and release, and yet be able temporarily 
to trap the ligand and (in the enzyme case) bring the necessary catalytic groups into 
the correct positions around the ligand. 
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The effects of gate fluctuations have recently been studied by analysis of the partially 
diffusion-controlled reaction of particles whose intrinsic reactivity fluctuates with time 
(McCammon and Northrup 1981, Northrup et a1 1982b, Szabo et a1 1982). In the 
simplest treatment, the reaction is described by the diffusion equation with a gated 
sink term : 

- a p = r - 2 d ( r 2 D $ )  - k , h ( t ) p s ( r - R )  
at ar 

and a reflecting wall boundary condition at r = R.  Here, p (  r, t )  is the density of ligands 
at a distance r from the protein at time t, D is the relative diffusion constant of protein 
and ligand, k, is the specific rate constant in the gate-open (reactive) state, R is the 
ligand-protein contact distance and h( t )  is a characteristic gating function that fluctuates 
between values of 0 (gate closed) and 1 (gate open). The average binding rate that 
would be observed in a conventional experiment is characterised by the bimolecular 
rate constant: 

k = ( 4 r R 2 k , h ( t ) p ( R ,  t ) )  (8.2) 

where the brackets indicate a time average. The effects of gating on k are found to 
depend on such factors as the typical lifetimes of the gate-open and gate-closed states 
and the net rate of motion of ligands relative to the protein. In the limit of slow gate 
dynamics, k is just the rate constant for the gate-fixed-open case, multiplied by the 
fraction of the time that the gate is open. In other cases, substantial deviations from 
this ‘intuitive’ result occur. 

8.2. Structural transformations 

Structural transformations are involved in the function of many proteins. Examples 
include the atomic rearrangements that occur in protein and substrate during catalytic 
steps in enzymes (Lipscomb 1982), the shifting of enzymes or other proteins from less 
active to more active conformations upon the binding of substrates (Koshland 1963, 
Lipscomb 1982) or effector molecules (Monod et a1 1963, Perutz 1970, Huber and 
Bennett 1983), and the large-scale structure changes in myosin that are involved in 
muscle contraction. Such transformations typically consist of one or more activated 
processes, in which the protein must cross free energy barriers that separate different 
possible stable states. The experimental rates of such processes have generally been 
analysed in terms of the ‘thermodynamic’ formulation of transition-state theory, in 
which the rate constant is expressed as (Fersht 1977) 

k = ( k B T / h )  exp ( A S * / R )  exp ( - A H * / R T ) .  (8.3) 

Here, kB is Boltzmann’s constant, T is absolute temperature, h is Planck’s constant, 
R is the gas constant, AS* is the entropy of activation and AH’ is the enthalpy of 
activation. The latter two quantities are determined by measuring the temperature 
dependence of the rate constant. Other similar quantities are determined by varying 
other conditions, e.g. measurement of the pressure dependence of the rate constant 
leads to an ‘activation volume’ defined by 

(8 .4)  
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Although this approach allows a useful reduction of experimental data in terms of a 
small number of parameters, recent studies have shown that such parameters must be 
interpreted with caution in any attempt to make contact with the microscopic dynamics 
of the system. Thus, AS* and AH* will not be simply related to the actual entropy 
and enthalpy costs of crossing a barrier if the actual enthalpy barrier exhibits a significant 
temperature dependence. Such a temperature dependence can arise, e.g. from thermal 
expansion and contraction effects that modulate steric hindrance in dense materials 
(Northrup et a1 1982). Similarly, an activation volume does not in general correspond 
to a physical volume that must open up to allow an activated process to proceed 
(Karplus and McCammon 1981b). Because of the intimate coupling between local 
and collective motions in proteins (cf § 5.3), caution is also required in attempts to 
interpret parameters such as AH’ (or even the actual enthalpy barriers) in local terms 
(Northrup and McCammon 1984). For example, collective polarisation fluctuations 
appear to play a role in certain of the catalytic steps of lysozyme (Warshel and Levitt 
1976). 

A second type of difficulty in the simple thermodynamic transition-state theory 
approach arises from the neglect of non-equilibrium effects in equation (8.3). Frictional 
effects generally decrease the rate of a reaction from what would be expected based 
on the potential energy surface alone (cf 0 5.3) and, in some cases, may even determine 
the dominant mechanism or pathway of reaction (cf § 6). That such effects are 
important in biology is clear, for example, from recent experiments on myoglobin 
reported by Frauenfelder’s group (Beece et al 1980). In these experiments, the rate 
of rebinding of ligands (e.g. O2 or CO) to the haeme iron is monitored spectroscopically 
following an initial laser flash that breaks the iron-ligand bond. Analysis of the 
temperature dependence of rebinding indicates that the ligand can hop among several 
stable locations within the protein before exiting to the solvent or rebinding to the 
iron. The stable locations are separated by energy barriers that are mostly of steric 
origin and that fluctuate in magnitude as a consequence of the normal internal motion 
of the protein atoms. The experiments show that the rate of hopping over each barrier 
depends on the solvent viscosity, even for barriers corresponding to transitions well 
within the protein interior. These results are most simply understood in terms of a 
coupling of the local ligand displacements to collective fluctuations that involve motion 
of the protein-solvent interface. In the language used elsewhere in this review (cf 00  5 
and 8.1)’ the ligand hopping can be viewed as a gated process and the dynamics of 
the gate is influenced by the viscosity of the solvent. 

9. Summary and future directions 

As the preceding sections will have made clear, there is ample evidence for a wide 
variety of motions in protein molecules. These molecules are constantly shifting among 
different conformations in the general neighbourhood of the native structure. Some 
of these conformations represent different stable structures or substates into which 
the protein can be frozen at sufficiently low temperatures. Such substates may be 
analogous to the defective lattice configurations or ‘hidden structures’ that are obtained 
upon quenching liquids (Stillinger and Weber 1982). From this point of view, a protein 
differs from a liquid primarily as a result of the constraints imposed by the covalent 
connectivity of the polypeptide chain. These constraints broaden the spectrum of 
structural relaxation times for the protein by increasing the energy barriers for larger 
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conformational transitions and introduce strong couplings between local and collective 
displacements. 

It is also clear that the motions in protein molecules are important in terms of 
biological activity. The biological functions of protein mobility range from the transient 
occurrence of structures that allow ligand binding to the preferential population of 
active substates induced by the binding of effector molecules. In this connection, it is 
of interest that the regions of proteins that are involved in ligand binding and catalysis 
often exhibit thermal displacements of particularly large magnitude (Artymiuk et a1 
1979, Frauenfelder et a1 1979, Huber and Bennett 1983). 

Many of the theoretical techniques needed to study protein dynamics are now 
established and some key results have been obtained. More dramatic developments 
should appear in the forseeable future, as will be discussed below. These developments 
will require the extension of current methods in several directions. First, it will be 
essential to have a detailed treatment of the solvent surroundings of the protein (Rupley 
et a1 1983). A useful step in this direction has been taken in a recent molecular 
dynamics simulation of protein and water (van Gunsteren et a1 1983). Second, it will 
be important to extend the current energy functions with quantum-mechanical calcula- 
tions so that covalent transformations in enzymes, electron transfer reactions and 
similar problems can be studied (Warshel 1981). Third, it will be necessary to develop 
appropriate simplified thermal-bath models so that detailed calculations need be 
performed only for the vicinity of an active site or other region of special interest 
(Berkowitz and McCammon 1982). Fourth, it will be important to develop techniques 
to determine optimum reaction coordinates to facilitate the analysis of activated 
processes (Northrup et a1 1982a). These and other technical developments are the 
subjects of active investigation. 

There are numerous areas for application of the existing and developing theoretical 
methods. These include fundamental aspects of protein dynamics such as the detailed 
characterisation of the space-time correlations involved in collective motions in pro- 
teins, the effect of solvent on these motions and the mechanisms of accumulation and 
disposal of kinetic energy during activated processes. Even more needs to be done in 
the general area of biological applications. The details of protein-ligand interactions, 
including the associated solvation changes, must be investigated. For particularly 
flexible binding sites, the effects of interactions between ligand and protein upon the 
gating transitions of the protein await study. The dynamical details of the protein 
structural transitions involved in ligand binding, activation and enzyme function have 
not yet been appreciably explored by theoretical means. 

In time, one can expect theoretical protein dynamics to be of practical value in 
such areas as drug design and protein engineering. Recent attempts at drug design 
based on the examination of x-ray structures of receptor molecules have largely been 
frustrated by the delicate balance of the interactions involved (Abraham et a1 1983), 
although incorporation of basic physicochemical data (Smith et a1 1982) and molecular 
mechanics models that allow for some distortion of the binding sites (Deiters et a1 
1982, Wipff et a1 1983) have proven helpful. The introduction of techniques for 
calculating free energy changes and rate constants, together with further developments 
in computing technology, are likely to make this an increasingly active area in the 
future. The advent of experimental methods for making arbitrary alterations in the 
amino-acid composition of proteins (Winter et a1 1982, Ulmer 1983), together with 
the theoretical advances mentioned above, raise the intriguing possibility of designing 
proteins with predetermined functionality. This would, of course, have major 
implications in medicine and industry. 
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In his Dublin lectures of 1943, Erwin Schrodinger (1967) eloquently laid out much 
of the conceptual framework of molecular biophysics. This framework included the 
description of biological macromolecules as aperiodic crystals, and emphasised the 
functional importance of such dynamical processes as diffusion and activated structural 
transformations. Although Schrodinger’s remarks were focused on genetic activity, it 
is now clear that protein molecules are well-accomodated within this same framework. 
Physicists and chemical physicists have made essential contributions to the explication 
of protein structure and dynamics. Their continuing contributions will increasingly 
illuminate the detailed nature of protein function. 
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