

Микроскопия и микроспектроскопия биообъектов. Детекция наночастиц.

Алексей Валерьевич Феофанов

Кафедра биоинженерии Биологический факультет МГУ им. М.В. Ломоносова

Лаборатория оптической микроскопии и спектроскопии биомолекул ИБХ РАН

Лекция № 3

длина волны, нм

Принципиальная схема линейного сканирования, используемая в приборе для конфокальной сканирующей микроспектроскопии фирмы Dilor

Метод конфокальной микроспектроскопии и реконструкции спектральных изображений (КОМИРСИ) количественный метод исследования накопления, локализации и молекулярных взаимодействий биологическиактивных соединений (БАС) в биологических образцах

- метод КОМИРСИ специальная разновидность лазерной сканирующей конфокальной микроскопии (ЛСКМ)
- особенность: регистрируются полные спектры флуоресценции (или КР) от каждого микрообъема сканируемой области
- преимущество: все спектральные параметры доступны для анализа, включая

интенсивность

ширина спектра

форма

положение максимума

Алгоритм, лежащий в основе метода КОМИРСИ

Измерение спектральных изображений (2D массивов спектров) с 3D разрешением

Конфокальный 1. сканирующий микроспектрометр используется для измерения каждой точке сканируемого оптического B образца сечения полных спектров Важно, флуоресценции. спектры ЧТО ЭТИ (как измеряются C трехмерным правило, субмикронным) пространственным разрешением;

2. Измеренный двумерный (2D) набор спектров в полном объеме сохраняется в виде файла, что дает отсроченную возможность многократного анализа этих спектров и использования их для реконструкции спектральных изображений на основе различных вариантов интерпретации обнаруженных сигналов;

3. Измерения повторяются для аналогичных образцов (например, группы клеток, серии срезов ткани) приготовленных в тех же и измененных условиях;

Алгоритм, лежащий в основе метода КОМИРСИ

Измерение спектральных изображений (2D массивов спектров) с 3D разрешением

Анализ спектральных изображений, моделирование в растворах

выбор базисного набора спектров сравнения 4. Интерактивный анализ 2D массива спектров. Используется информация о числе и природе присутствующих в образце флуорофоров.

Моделируются состояние, микроокружение и молекулярные взаимодействия хромофоров в растворах.

С привлечением модельных спектров флуоресценции этих флуорофоров определяется набор спектров сравнения для разложения экспериментальных спектров по базису.

Точность и адекватность этого разложения контролируется, как для всех измеренных точек одного образца, так и для аналогичных образцов.

На основе обнаруженных неточностей разложения выявляются недостающие спектры сравнения и/или уточняются условия измерения спектров от изолированных хромофоров для более точного описания всех спектров, наблюдаемых в образцах.

В результате формируется окончательный базисный набор спектров сравнения, точно и адекватно описывающий каждый спектр исследуемого образца.

Алгоритм, лежащий в основе метода КОМИРСИ

Измерение калибровочных зависимостей для количественных расчетов

- С использованием одного из модельных растворов БАС должна быть измерена калибровочная зависимость интегральной интенсивности спектра от концентрации мономерной формы БАС в растворе.
- Это измерение следует проводить на том же приборе, с той же длиной волны взбуждения, при той же мощности лазера, напряжении на ФЭУ и с тем же разрешением ΔZ, что и измерения на клетках.
- Время накопления спектров может быть любым, но тогда интенсивность калибровочных спектров подлежит коррекции (подразумевается, что интенсивность спектра прямо пропорциональна времени накопления), с учетом времени накопления внутриклеточных спектров.
- Подобрав в модельных экспериментах условия, в которых происходят изменения формы спектров БАС точно и адекватно отражающие изменения формы спектров БАС в клетках, мы полагаем, что и интенсивности сигналов эквимолярных количеств БАС в клетке и в модельных условиях будут одинаковыми. Тогда сравнивая интенсивности одинаковых по форме спектров от равных микрообъемов клетки и модельного раствора с известной концентрацией БАС, можно оценить концентрацию БАС (его комплексов) в микрообъеме клетки.

Метод КОМИРСИ предоставляет уникальные возможности для изучения флуоресцирующих противоопухолевых соединений в живых клетках

Молекулярные взаимодействия, в которых участвует БАС, могут вызывать заметные изменения его спектров флуоресценции.

Анализ внутриклеточных спектров БАС методом КОМИРСИ путь к идентификации и изучению молекулярных взаимодействий и микроокружения БАС в живых клетках.

Регистрация внутриклеточных молекулярных взаимодействий БАС– это ключ к пониманию механизмов их функциональной активности.

Противоопухолевый агент митоксантрон (МИТО)

Лечит острый нелимфоцитарный лейкоз, распространенный рак молочной железы и неходжкинские лимфомы

флуоресценция МИТО в живых клетках эритролейкоза человека К562

Отражает ли это изображение реальное распределение МИТО в клетке?

Нет!

Изображение клетки в проходящем белом свете флуоресцентное изображение клетки, измеренное с помощью обычного ЛСКМ Исследование распределения и молекулярных взаимодействий противоопухолевого препарата митоксантрон в живых раковых клетках К562 методом КОМИРСИ

Внутриклеточные спектры митоксантрона отличаются по интенсивности и форме

Конфокальное изображение распределения внутриклеточной интенсивности флуоресценции митоксантрона

Модельные эксперименты в растворах

Параметры спектров флуоресценции МИТО и НХМ в различном микроокружении, комплексах и смесях

,OH

	Растворитель, условия	λ _{макс} ,ΗΜ	Δλ, ΗΜ	I _{отн}	
	МИТО, PBS pH7,4	685	58	1,0	Влияние рН
	МИТО, PBS pH10	685	58	0,1	
>	МИТО, PBS pH4,5	685	58	0,8	Влияние
	МИТО, метанол	686	58	2,9	гидрофобности
	МИТО, этанол	692	49	2	микроокружения
	МИТО, пропанол	694	46	2,1	Влияние
	МИТО, Тритон Х-100	685	54	2,1	молекулярных
	МИТО -ДНК (1/17 п.о.)	700	50	0,65	взаимодействий
	МИТО -РНК (1/29 о.)	690	56		
	МИТО -ДНК-топо II	700	50	0,65	HXM
	МИТО -топо II	685	<u> </u>	1,0	
	HXM, PBS pH7,4	652	46		
	НХМ, диоксан	652	36		метаболит

Модельные спектры, описывающие внутриклеточное состояние МИТО

полярном ружении

Ов обном ужении

ы МИТО с овыми тами

Pa	створитель, условия	λ _{макс} ,нм	Δλ, нм	I _{отн}	OH O HN
МИ	TO, PBS pH7,4	685	58	1,0	МИТО в микроок
					МИТ гидроф микроокр
МИ	ТО, пропанол	694	46	2,1	комплекси нуклеин
МИ	ТО-ДНК (1/17 п.о.)	700	50	0,65	КИСЛО
	+ спектр собс флуо	твенной ресценц	клеточної ии	й	
НХ	М, диоксан	652	36		метабо

Спектры из каждого микрообъема образца представляются в виде линейной суперпозиции модельных спектров

Спектральные изображения-количественные карты внутриклеточного распределения митоксантрона в различных состояниях и комплексах

мито-днк

МИТО в полярном окружении и в митохондриях

МИТО в гидрофобном окружении

NQX метаболи т

Средняя внутриклеточная концентрация МИТО в различных состояниях и комплексах в клетках К562 по данным метода КОМИРСИ

Состояние	Средняя концентрация МИТО						
МИТО в клетках	цитоплазма , мкМ	ядро, мкМ	нуклеоли, мкМ	нуклеоплазма, мкМ			
мито-днк	11±7	270±170	410±150	203±135			
МИТО- гидрофобное окружение	54±36	31±22					
МИТО- полярное окружение	75±47	22±12					

Метод может быть весьма полезен при разработке и скрининге новых производных противоопухолевых соединений, так как позволяет количественно сравнить их по способности накапливаться в клетках, образовывать комплексы молекулярными C клеточными мишенями, преодолевать механизмы МЛУ, позволяет выявить многие взаимосвязи между структурой соединений и их активностью.

Распределение и взаимодействия МИТО в клетках К562 в сравнении с резистентными клетками К562R.

инкубация : 10 мкМ МИТО, 1 ч

Совмещенные изображения

При изучении особенностей внутриклеточного накопления и распределения МИТО на разных стадиях клеточного цикла обнаружено, что МИТО вызывает остановку цикла клеток К562 в митозе на стадии

мито-днк

инкубация: 10 мкМ МИТО, 1 ч

НХМ метаболит МИТО в гидрофобном окружении

МИТО в полярном окружении Метод КОМИРСИ применим для изучения тканевого распределения, как флуоресцирующих БАС, так и нефлуоресцирующих, но обладающих интенсивным поглощением.

В последнем случае используется измерение колебательных спектров БАС на основе эффекта резонансного КР.

Микрофотография среза ткани мыши

Э- эпидермис, СТ – соединительная ткань, Ф- волосяной фолликул

Метод КОМИРСИ является высокоинформативным инструментом для разработки, скрининга и доклинических исследований новых противоопухолевых и других БАС, изучения механизмов их действия

Наиболее очевидным и уникальные преимущества метода КОМИРСИ:

- 1. возможность обнаружения и идентификации молекулярных комплексов БАС в живых клетках;
- 2. возможность количественного статистически достоверного анализа накопления, локализации и взаимодействий БАС в клетках, в различных клеточных органоидах и тканевых структурах;
- 3. возможность исследования особенностей молекулярных взаимодействий и механизмов действия БАС на разных уровнях структурной организации биологических объектов: в растворах, в живых клетках, в срезах ткани;
- 4. возможность полного разделения перекрывающихся спектров нескольких флуорофоров в клетках, что снимает ряд ограничений на выбор флуоресцентных зондов и обеспечивает наиболее точный анализ в исследованиях клеточной локализации БАС.

Недостатки метода КОМИРСИ:

- 1. значительные по сравнению с традиционной ЛСКМ временные затраты на измерение детальных 2D спектральных изображений;
- 2. относительная сложность реализации метода.

Скрининг циклоимидных производных хлорина рб, как фотосенсибилизаторов для фотодинамической терапии рака Задачи исследования

- Разработать эффективный фотосенсибилизатор (ФС) для ближней ИК-области, свойства которого превосходят хлорин рб и ФС первого поколения
- Исследовать механизмы функциональной активности этих ФС, взаимосвязи между структурой и активностью ФС, мишени действия ФС в клетках и тканях

Длина волны, нм

Исследованные соединения

Исходные соединения

 $Me = CH_3$

1 CH=CH₂

2 CHO

No. \mathbf{R}_1

<u>Переменные в структуре</u>

Наличие заряда

Наличие полярных групп

Наличие гидрофобных групп

 No.
 R₁
 R₃
 R₂

 удачные производные

 $3 \text{ CH}=\text{CH}_2 \text{ COO}^-$ (CH₂)₃OH $4 \text{ CH}=\text{CH}_2 \text{ COO}^ (CH_2)_2OH$ 5 CH=CH₂ COO⁻ **OCOMe** 6 CH=CH₂ COOMe OH 7 CH=CH₂ COOMe **OMe** 8 CH=CH₂ COOMe CH₂COO⁻ 9 CH=CH, COOMe $(CH_{2})_{2}COO^{-1}$ **10 CHO COO**- $(CH_2)_3OH$ **11 CHO** COOMe **OMe 12 CH=NOH COOMe** OMe

неудачные производные 13 CH=CH₂ COO⁻ CH₂COO⁻ 14 CH=CH₂ COO⁻ (CH₂)₂COO⁻ 15 CH=CH₂ COO⁻ OH 16 CHO COOMe OH 17 CH=CHCHO COOMe OCOMe 18 CH=CHCHO COOMe OH

Свойства в растворах

No.	R ₁	R ₂	R ₃	λ _Q ,	ϕ
				HM	
1	CH=CH ₂	-	-	665	0.73
8	CH=CH ₂	CH ₂ COOH	CH_3	708	0.60
9	CH=CH ₂	(CH ₂) ₂ COOH	CH_3	708	0.65
4	CH=CH ₂	$(CH_2)_2OH$	H	709	0.59
7	CH=CH ₂	OCH ₃	CH_3	710	0.73
3	CH=CH ₂	(CH ₂) ₃ OH	H	711	0.66
5	CH=CH ₂	OCOCH ₃	H	711	0.35
6	CH=CH ₂	OH	CH ₃	713	0.51
12	CH=NOH	OCH ₃	CH ₃	720	0.63
11	СНО	OCH ₃	CH ₃	740	0.44
10	CHO	(CH ₂) ₃ OH	H	74 6	0.68

а) нерастворимы в воде;
б) были солюбилизированы в эмульсии кремофора

Генерация АФК:

- синглетный кислород ДА гидроксил радикалы – НЕТ супероксид анион- зависит от окружения
- Условия генерации АФК: мономерная форма в липидном окружении

в) связываются с липидными и мембранными структурами
г) слабо связываются с белками
д) не связываются с ДНК и РНК

человека

No.	R ₁	R ₂	R ₃					
]	нейтральные молекулы							
7	CH=CH ₂	OCH ₃	CH ₃					
11	CHO	OCH ₃	CH ₃					
12	CH=NOH	OCH ₃	CH ₃					
исключение								
8	CH=CH ₂	CH ₂ COOH	CH ₃					

No.	R ₁	R ₂	\mathbf{R}_3						
	заряженные молекулы								
3	CH=CH ₂	(CH ₂) ₃ OH	H						
4	CH=CH ₂	(CH ₂) ₂ OH	H						
5	CH=CH ₂	OCOCH ₃	H						
9	CH=CH ₂	(CH ₂) ₂ COOH	CH ₃						
10	СНО	(CH ₂) ₃ OH	H						
исключение									
6	CH=CH ₂	OH	CH ₃						

Локализация ЦИХЛ в клетках А549

No.	R ₁	R ₂	R ₃
7	CH=CH ₂	OCH ₃	CH_3
11	СНО	OCH ₃	CH ₃
12	CH=NOH	OCH ₃	CH ₃
8	CH=CH ₂	CH ₂ COOH	CH ₃

соединение "7"; акридин оранжевый в лизосомах; ТR-трансферин в эндосомах

Локализация ЦИХЛ в клетках А549

No.	R ₁	\mathbf{R}_2	\mathbf{R}_3
7	CH=CH ₂	OCH ₃	CH ₃
11	CHO	OCH ₃	CH ₃
12	CH=NOH	OCH ₃	CH ₃
8	CH=CH ₂	CH ₂ COOH	CH ₃

соединение "7"; Нильский красный в липидных каплях; Со-локализация сигналов

Локализация ЦИХЛ в клетках А549

соединение "6" ВО**DIPY-**церамид в аппарате Гольджи

Со-локализация "6" и BODIPY-церамида в аппарате Гольджи

соединение "6" Rh123 в митохондриях

Нет со-локализации "6" и Rh123 в митохондриях

Локализация ЦИХЛ в клетках А549

(CH₂)₃OH

OH

H

 CH_3

CHO

CH=CH₂

10

Свойства ЦИХЛ в клетках А549

<u>Вывод</u>: скорости клеточного накопления и выведения зависят от структуры заместителей и изменяются в широких пределах

• Временные зависимости клеточного накопления, как правило, с хорошей точностью удается описать уравнением:

$$\mathbf{C}_{\text{cyt}}(\mathbf{t}) = \mathbf{C}_{\text{ex}} \mathbf{K}_{\text{k}} \mathbf{t} / (\mathbf{T}_{\text{up}} + \mathbf{t}) ,$$

где C_{cyt}(t) - средняя цитоплазматическая концентрация БАС, зависящая от времени инкубации t; C_{ex}-концентрация БАС во внешней среде; K_k – максимальное значение отношения C_{cyt}/C_{ex} при насыщении накопления; T_{up} время инкубации, при котором C_{cyt} достигает 50% от уровня насыщения.

• Данные по выведению БАС из клеток, как правило, хорошо описываются с помощью уравнения:

$$C_{cyt}(t) = C_{cyt}(0) \exp(-\ln 2 t / T_{ef})$$

 где C_{cyt}(0) -средняя цитоплазматическая концентрация БАС в момент времени, когда БАС был удален из внешней среды; T_{ef} – время полувыведения БАС из клеток.

Свойства ЦИХЛ в клетках А549

No.	R ₁	R ₂	R ₃	C _{in} /C _{out}	T _{up} (1/2)	$T_{ef}(1/2)$
					мин	мин
2	CHO	-	-	0.8	100	15
3	CH=CH ₂	(CH ₂) ₃ OH	H	5.5	≷0 ∖	60
4	CH=CH ₂	$(CH_2)_2OH$	Η	5.2	5	57
5	CH=CH ₂	OCOCH ₃	Η	2.5	7 \	61
6	CH=CH ₂	OH	Me	9.9	87	330
7	CH=CH ₂	OCH ₃	Me	5.9	41	X17
8	CH=CH ₂	CH ₂ COOH	Me	11	30	
9	CH=CH ₂	(CH ₂) ₂ COOH	Me	8	24	50
10	СНО	(CH ₂) ₃ OH	H	5.0	10	10
11	СНО	OCH ₃	Me	5.2	60	30
12	CH=NOH	OCH ₃	Me	6	90	40

быстрое накопление и очень медленно

выведение;

медленное накопление и медленное выведение;

быстрое накопление и медленное выведение;

быстрое накопление и быстрое выведение

Вывод:

Коэффициент накопления, скорости накопления и выведения не зависят от внутриклеточной локализации ЦИХЛ.

Они зависят от заместителей

Механизмы интернализации

Накопление ЦИХЛ определяется механизмами транспорта, чувствительными к температуре

No.	R ₁	R ₂	R ₃
3	CH=CH ₂	(CH ₂) ₃ OH	Η
6	CH=CH ₂	OH	CH ₃
7	CH=CH ₂	OCH ₃	CH ₃

Механизм гибели клеток под действием соединений 3, 6 и 7

зависит от дозы света и внутриклеточной концентрации ФС

Суб-фототоксичная доза (ИК₅₀)– апоптоз Фототоксичная доза (ИК₉₀) – некроз

состояние органелл

Суб-фототоксичная доза – падение потенциала митохондрий

Фототоксичная доза – инактивации митохондрий разрушение лизосом пермеабилизация клеточной мембраны

No.	R ₁	R ₂	R ₃
3	CH=CH ₂	(CH ₂) ₃ OH	Η
6	CH=CH ₂	OH	CH ₃
7	CH=CH ₂	OCH ₃	CH ₃

Соединения, отобранные для исследований на животных

Поглощение на границе ближней ИК-области Высокий квантовый выход генерации синглетного кислорода

Улучшенное внутриклеточное проникновение

Усиленное накопление в разных клеточных органоидах, чувствительных к фотодинамическому повреждению

Варьируемые параметры клеточного накопления и выведения

Низкая темновая цитотоксичность

Высокая фотоиндуцированная цитотоксичность

No	R ₁	R ₂	R ₃	λ _Q ,	ϕ	Локализация	C _{in} /C _{out}	T _{up}	T _{ef}	ИК ₅₀
				HM				МИН	МИН	нМ
3	CH=CH ₂	$(CH_2)_3OH$	H	711	0.66	АГ и ЭР	5.5	30	60	90
6	CH=CH ₂	OH	CH ₃	713	0.51	АГ и ЭР	9.9	87	330	30
7	CH=CH ₂	OCH ₃	CH ₃	710	0.73	ЛК	5.9	41	217	60
11	СНО	OCH ₃	CH ₃	740	0.44	ЛК	5.2	60	30	63

Хлорин рбИК50 = 2800 нМулучшена в 30 - 100 разФотогем ИК50 = 9000 нМулучшена в 100 - 300 раз

Распределение соединения 3 в срезах ткани мышей с привитой подкожно опухолью Р388

соединительная ткань через 3 ч после введения соединения 3

мышечная ткань через 15 мин после введения соединения 3

Доза соединения 3 - 5 мкмоль/кг.

Распределение соединения 7 в срезах ткани мышей с привитой подкожно опухолью Р388

кровеносный сосуд в подкожной жировой ткани через <u>15 мин после введ</u>ения соединения 7

опухолевые клетки через 1,5 ч после инъекции соединения 7

Доза соединения 7 - 5 мкмоль/кг.

Средние концентрации соединений 3 и 7 в опухоли и окружающих тканях при различных интервалах после внутривенного введения соединений (5 мкмоль/кг) по данным метода КОМИРСИ

опухолевые клетки (), подкожная соединительная ткань, окружающая опухолевый узелок (), подкожная жировая ткань (), прилегающие к опухоли мышечные волокна (), кожа (), стенки кровеносных сосудов () Процент животных с излеченной первичной опухолью на 14-й день после ФДТ при различных дозах ЦИХЛ и интервалах между инъекцией и облучением (данные МНИОИ им. П.А. Герцена).

Доза,	интервал между инъекцией и облучением				
мкмоль/кг	15 мин	45 мин	1,5 ч	3 ч	бч
соединение 3					
0,5	33 (6*)				
1	50 (6)	0 (6)	0 (6)	0 (6)	
2		43 (7)	14 (7)	9 (11)	0 (6)
4		67 (6)	67 (6)	36 (14)	0 (6)
8				58 (12)	8 (12)
соединение 7					
4	0 (6)	17 (12)	58 (12)	0 (8)	

* Общее число животных в опыте