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m Single particle Forster resonance energy transfer
(spFRET) microscopy and how it can be applied to the
study of nucleosome structure:

microscopy of freely diffusing nucleosomes;
microscopy of immobilized nucleosomes

m Study of nucleosome transcription with RNA polymerase
m Study of nucleosome interactions with linker histone H1

m Study of interactions between nucleosomes and
poly(ADP-ribose) polymerase 1(PARP1)

m Study of interactions between nucleosomes and FACT
(Facilitates Chromatin Transcription) protein complex



Chromatin: structural and functional
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Mononucleosomes are convenient model system to study
nucleosome interactions with different protein factors
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DNA (147 b.p. +20 b.p. linker)
603 strong nucleosome-positioning
sequence
+

core histones
(2xH2A, 2xH2B, 2xH3, 2xH4)

nucleosome nanoparticle (10X5 nm size)
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Studies with
biochemical and molecular biology
techniques



Method: fluorescence microscopy of single particles (complexes)

Middle Contradiction:

(+35, +113) BINE = Resolution of conventional optical
microscopy: lateral 200 nm; axial
0 nm.

B Nucleosome size — about 10 nm.

To study structural changes at the
level of single nucleosomes it is
) necessary:

Proximal “egs

(+13,+91) Q 1. 'To use Forster resonance energy

transfer (FRET) effect (a probe of
conformational transitions at the
scale of 4-9 nm)

2. To isolate single nucleosomes in
space and/or in time.

Kudryashova et al. Methods Mol Biol. 2015,
1288, 395-412
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Method: fluorescence microscopy of single particles (complexes)
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Analysis of transcription through 603 nucleosome containing
intact and fluorophore-labeled DNA

Fluorophores: -+
NTPs:

No additional pausing was detected on
fluorophore-labeled DINA, suggesting that
fluorophores do not interfere with
progression of the enzyme.

Transcription by RNAP was conducted in the
presence of N'TPs for 30 s at 150 mM KCl




Study of freely diffusing single nucleosomes and their complexes

solution with
nucleosomes
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Amount of sample:
volume - 10 ul
concentration — 0.2-1 nM
statistics- 1000-10000 particles/ 10 min



Study of freely diffusing single nuclesomes and their complexes
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Taskl. Study of nucleosome transcription with RINA polymerase
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Transcription is the first step of gene expression:
a particular DNA region is copied into RNA by
the RNA polymerase enzyme.


http://www.google.ru/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAgQjB0wAGoVChMIyvPxzJv-xgIVQxIsCh11bwlI&url=http://www.nobelprize.org/educational/medicine/dna/a/transcription/&ei=uqm3VcquKMOksAH13qXABA&psig=AFQjCNGKeBw-LlBqBBD7vzRZRET5DjxdJQ&ust=1438186298769379

Histone core .. ..
RNA polymerase (octamer) Transcription of chromatin is a

functionally important and complex
process that occurs with participation of
dozens different proteins
RNA p

T7A1 DNA matrix
promoter

RNAP type 3

Transcription stages: RNAP binding to promoter,
initiation, elongation and termination
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Formation of stalled

T7A OoC . :
-39 -5 elongation complexes in
promoter b+ATP, GTP
a mononucleosome system
EC-39
-39 -5
V+ATP, CTP, GTP
= b EC-5
-39 -5

}
+all NTPs
(post-transcriptional state)

EC-39

Shaytan &Armeev 2015
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Formation of EC-5 does not disturb nucleosome structure in
the distal region

Frequency, %

Nucleosome survives after transcription
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Task 2. Study of interactions of nucleosomes
with linker histone H1

An asymmetrical structural model

of the gH1-nucleosome complex.

Zhou et al. PNAS (2013), 110, 19390-
19395



Interactions of nucleosomes with the linker histone H1.5
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Task 3. Study of interactions between nucleosomes and
FACT (Facilitates Chromatin Transcription) protein complex

FACT participates in arange of processes including DNA transcription,
replication, and repair

FACT is an essential and highly conserved histone chaperone that can
assist nucleosome assembly, but surprisingly it also promotes
disassembly, so it can both stabilize and destabilize chromatin.

FACT from the yeast Saccharomyces cerevisiae is a heterodimer of Sptl1l6
and Pob3 proteins, whose functions are supported by the Nhp6 protein

FACT increases the accessibility of nucleosomal DNA but the mechanism
and extent of this nucleosome reorganization are unknown.



Interactions of FACT with nucleosomes

Positions of Cy3/Cy5 on 'Yeast FACT consists of three subunits
nucleosomal DNA !

@ - Spt16/Pob3 FACT subunits

. - Nhp6 FACT subunit

@ SpFRET measurements
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N57/135 “ = Valieva et al. Nat Struct Mol Biol. 2016; 23(12), 1111-1116.
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DNA uncoiling from intact octamer
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FACT is likely to interact both with
uncoiled DNA and with core histones,

replacing some of DNA-histone and
histone-histone interactions

NUCLEOSOME
BOUNDARIES

NHP6

DNA

Valieva et al. Nat Struct Mol Biol. 2016; 23(12), 1111-1116.



FACT binding results in
a dramatic,
ATP-independent,
symmetrical and
reversible uncoiling of DNA

This uncoiling affects at least 70% of DNA in a nucleosome,
occurs without apparent loss of histones and
proceeds via an all-or-none mechanism.

FACT-dependent nucleosome unfolding modulates the
accessibility of nucleosomal DNA, and this is an important
function of FACT in vivo.



Study of immobilized single
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Immobilized
nucleosomes
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Immobilized nucleosomes (distal labeling)
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t=0.000 s

Immobilized EC-5 complex
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Experimental setup for the study of immobilized nucleosomes
using Total Internal Reflection Fluorescence (TIRF) microscopy

microfluidic cell
with immobilized
nucleosomes

<=Z2> objective

D'V'l TIRF
module

Time resolution is ca. 100 ms
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FRET kinetics of an immobilized nucleosome with 140 ms step
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Tasks
that can be solved with immobilized nucleosomes

Structure in dynamics (DNA “breathing’)
Lifetime of conformational states

Kinetics of complex formation and dissociation (dissociation
constant)

Titration of complexes (dissociation constant)

Formation of an extended set of stalled elongation complexes
with RNAP

Transcription in kinetics
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