

Введение в методы микроскопии в биологии. Оптическая микроскопия

Алексей Валерьевич Феофанов

Кафедра биоинженерии Биологический факультет МГУ им. М.В. Ломоносова

Лаборатория оптической микроскопии и спектроскопии биомолекул ИБХ РАН

Лекция № 4

Оптическая схема конфокальной фильтрации сигнала

Изобретена в 1955 Проф. Мински

Устройства для разложения света в спектр: периодическая решетка и призма

Разложение белого света в спектр Сэр Исаак Ньютон в 1676 г.

Сравнение свойств флуоресцентного и конфокального лазерного сканирующего микроскопов

эпифлуоресцентное изображение конфокальное изображение

Толстый биологический образец окрашен тремя флуорофорами

Внешний вид конфокальных микроскопов фирмы ZEISS

Принципиальная оптическая схема конфокального микроскопа

Принципиальная оптическая схема конфокального микроскопа фирмы ZEISS LSM510-Meta

Толщина оптического слоя ∆Z_{сл}, от которого измеряется сигнал в конфокальном режиме

$$\Delta \mathbf{Z}_{c,n} = ([0,88 \times \lambda_{\phi,n} / (n - (n^2 - A^2)^{0,5})]^2 + 2 \times n^2 \times \phi^2 / A^2)^{0,5},$$

где *А*-числовая апертура объектива, *n* — показатель преломления иммерсионной среды,

ф- эффективный диаметр конфокального отверстия, λ_{фл} – характерная средняя длина волны.

 $\phi = D / \Gamma,$

где *D*- диаметр конфокального отверстия в мкм, *Г*- увеличение микроскопа между фокальной плоскостью объектива и сопряженной фокальной плоскостью, в которой расположена конфокальная диафрагма.

Разрешение конфокального микроскопа:

 $\Delta \mathbf{Z} = \mathbf{0.88} \times \lambda_{\rm B} / (n - (n^2 - A^2)^{0.5}), \ \Delta \mathbf{X} = \Delta \mathbf{Y} = \mathbf{0.51} \times \lambda_{\rm B} / A$

ГДЕ $\lambda_{\rm B}$ – длина волны возбуждения

На практике

 $\phi \sim d$

d- диаметр диска Эри для данного объектива и длины волны при A=1,3; n=1,5; λ_{cp} =0,5 мкм обеспечивается разрешение: $\Delta X = \Delta Y = 0,22$ мкм, $\Delta Z = 0,56$ мкм, а толщина оптического слоя, от которого измеряется сигнал $\Delta Z_{cu} = 1,06$ мкм.

При **ф<0,25** *d*,

улучшается также и разрешение в плоскости ХҮ сканируемого объекта.

В этом теоретическом случае:

 $\Delta X = \Delta Y = 0,14$ мкм; $\Delta Z = \Delta Z c \pi = 0,45$ мкм.

Функция распределения точки в различных флуоресцентных микроскопах

Влияние диаметра конфокальной диафрагмы на латеральное разрешение и интенсивность сигнала (результаты расчета)

Улучшение латерального разрешения достигается за счет значительной потери интенсивности сигнала

Влияние диаметра конфокальной диафрагмы на разрешение и интенсивность сигнала

Распределение Rh-CT2 Naja oxiana в клетках А549 аденокарциномы легкого человека, измеренное методом КЛСМ

1,2 мкМ Rh-CT2 × 1 ч (без отмывки)

Локализация - цитоплазматическая Распределение - гранулярное (везикулярное)

Конфокальное трехмерное сканирование клетки

3D-распределение и локализация цитотоксина CT2No в клетках HL60 при субцитотоксических концентрациях

Красный - СТ2No Зеленый – лизосомы LysoTracker Yellow Желтый – локализация СТ2No в лизосомах

3D-распределение и локализация цитотоксина CT2No в клетках HL60 при субцитотоксических концентрациях

Красный - СТ2No Зеленый – эндосомы трансферрин-OregonGreen Желтый – локализация СТ2No в эндосомах

Взаимодействие антимикробного пептида латарцина-93 (La93) с раковыми клетками HeLa в реальном времени

0,3 мин1,3 мин3 мин9 мин2 мкМ Rh-La93La93 GLFGKLIKKFGRKAISYAVKKARGKH

Лазерная сканирующая конфокальная микроскопия

специальные инкубаторы поддерживают под микроскопом заданную температуру, содержание СО₂ и кислорода, обеспечивают возможность смены среды и проведения микроинъекций Исследования методом ЛСКМ могут проводиться на:

- фиксированных клетках,
- тонких срезах тканей растительного и животного происхождения
- на живых клетках в культуре
- небольших живых многоклеточных организмах.

ЛСКМ- возможность измерения динамических и кинетических изменений в живых объектах

до 5 конфокальных изображений размером 512 × 512 точек за 1 сек.

профиль сигнала вдоль линии образца - каждые 0,3-0,6 мсек.

«Микрокюветы» для исследований живых клеток под микроскопом

Lab-Tek (Nunc) chambered coverglasses

Greiner bio-one

Совместимы только с инвертированным микроскопом

Спектры из каждого микрообъема образца представляются в виде линейной суперпозиции модельных спектров

Спектральные изображения-количественные карты внутриклеточного распределения митоксантрона в различных состояниях и комплексах

мито-днк

МИТО в полярном окружении и в митохондриях

МИТО в гидрофобном окружении

NQX метаболит

